![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndxarg | Structured version Visualization version GIF version |
Description: Get the numeric argument from a defined structure component extractor such as df-base 17246. (Contributed by Mario Carneiro, 6-Oct-2013.) |
Ref | Expression |
---|---|
ndxarg.e | ⊢ 𝐸 = Slot 𝑁 |
ndxarg.n | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
ndxarg | ⊢ (𝐸‘ndx) = 𝑁 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ndx 17228 | . . . 4 ⊢ ndx = ( I ↾ ℕ) | |
2 | nnex 12270 | . . . . 5 ⊢ ℕ ∈ V | |
3 | resiexg 7935 | . . . . 5 ⊢ (ℕ ∈ V → ( I ↾ ℕ) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ℕ) ∈ V |
5 | 1, 4 | eqeltri 2835 | . . 3 ⊢ ndx ∈ V |
6 | ndxarg.e | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
7 | 5, 6 | strfvn 17220 | . 2 ⊢ (𝐸‘ndx) = (ndx‘𝑁) |
8 | 1 | fveq1i 6908 | . 2 ⊢ (ndx‘𝑁) = (( I ↾ ℕ)‘𝑁) |
9 | ndxarg.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
10 | fvresi 7193 | . . 3 ⊢ (𝑁 ∈ ℕ → (( I ↾ ℕ)‘𝑁) = 𝑁) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (( I ↾ ℕ)‘𝑁) = 𝑁 |
12 | 7, 8, 11 | 3eqtri 2767 | 1 ⊢ (𝐸‘ndx) = 𝑁 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 Vcvv 3478 I cid 5582 ↾ cres 5691 ‘cfv 6563 ℕcn 12264 Slot cslot 17215 ndxcnx 17227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 df-slot 17216 df-ndx 17228 |
This theorem is referenced by: ndxid 17231 basendx 17254 basendxnnOLD 17256 2strstr 17267 2strstr1OLD 17271 2strop1 17273 resslemOLD 17288 plusgndx 17324 basendxnplusgndxOLD 17329 mulrndx 17339 basendxnmulrndxOLD 17342 starvndx 17348 scandx 17360 vscandx 17365 ipndx 17376 tsetndx 17398 plendx 17412 ocndx 17427 dsndx 17431 unifndx 17441 homndx 17457 ccondx 17459 slotsbhcdifOLD 17462 oppglemOLD 19382 symgvalstructOLD 19430 mgplemOLD 20157 opprlemOLD 20357 rmodislmodOLD 20946 sralemOLD 21194 zlmlemOLD 21546 znbaslemOLD 21572 opsrbaslemOLD 22086 tnglemOLD 24670 itvndx 28460 lngndx 28461 ttglemOLD 28901 cchhllemOLD 28917 edgfndx 29021 baseltedgfOLD 29026 eufndx 33274 resvlemOLD 33338 hlhilslemOLD 41922 mnringnmulrdOLD 44206 |
Copyright terms: Public domain | W3C validator |