![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndxarg | Structured version Visualization version GIF version |
Description: Get the numeric argument from a defined structure component extractor such as df-base 17145. (Contributed by Mario Carneiro, 6-Oct-2013.) |
Ref | Expression |
---|---|
ndxarg.e | β’ πΈ = Slot π |
ndxarg.n | β’ π β β |
Ref | Expression |
---|---|
ndxarg | β’ (πΈβndx) = π |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ndx 17127 | . . . 4 β’ ndx = ( I βΎ β) | |
2 | nnex 12218 | . . . . 5 β’ β β V | |
3 | resiexg 7905 | . . . . 5 β’ (β β V β ( I βΎ β) β V) | |
4 | 2, 3 | ax-mp 5 | . . . 4 β’ ( I βΎ β) β V |
5 | 1, 4 | eqeltri 2830 | . . 3 β’ ndx β V |
6 | ndxarg.e | . . 3 β’ πΈ = Slot π | |
7 | 5, 6 | strfvn 17119 | . 2 β’ (πΈβndx) = (ndxβπ) |
8 | 1 | fveq1i 6893 | . 2 β’ (ndxβπ) = (( I βΎ β)βπ) |
9 | ndxarg.n | . . 3 β’ π β β | |
10 | fvresi 7171 | . . 3 β’ (π β β β (( I βΎ β)βπ) = π) | |
11 | 9, 10 | ax-mp 5 | . 2 β’ (( I βΎ β)βπ) = π |
12 | 7, 8, 11 | 3eqtri 2765 | 1 β’ (πΈβndx) = π |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 β wcel 2107 Vcvv 3475 I cid 5574 βΎ cres 5679 βcfv 6544 βcn 12212 Slot cslot 17114 ndxcnx 17126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-nn 12213 df-slot 17115 df-ndx 17127 |
This theorem is referenced by: ndxid 17130 basendx 17153 basendxnnOLD 17155 2strstr 17166 2strstr1OLD 17170 2strop1 17172 resslemOLD 17187 plusgndx 17223 basendxnplusgndxOLD 17228 mulrndx 17238 basendxnmulrndxOLD 17241 starvndx 17247 scandx 17259 vscandx 17264 ipndx 17275 tsetndx 17297 plendx 17311 ocndx 17326 dsndx 17330 unifndx 17340 homndx 17356 ccondx 17358 slotsbhcdifOLD 17361 oppglemOLD 19215 symgvalstructOLD 19265 mgplemOLD 19992 opprlemOLD 20156 rmodislmodOLD 20541 sralemOLD 20791 zlmlemOLD 21067 znbaslemOLD 21091 opsrbaslemOLD 21605 tnglemOLD 24150 itvndx 27688 lngndx 27689 ttglemOLD 28129 cchhllemOLD 28145 edgfndx 28249 baseltedgfOLD 28254 eufndx 32390 resvlemOLD 32446 hlhilslemOLD 40810 mnringnmulrdOLD 42969 |
Copyright terms: Public domain | W3C validator |