Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ndxarg | Structured version Visualization version GIF version |
Description: Get the numeric argument from a defined structure component extractor such as df-base 16537. (Contributed by Mario Carneiro, 6-Oct-2013.) |
Ref | Expression |
---|---|
ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
ndxarg | ⊢ (𝐸‘ndx) = 𝑁 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ndx 16534 | . . . 4 ⊢ ndx = ( I ↾ ℕ) | |
2 | nnex 11670 | . . . . 5 ⊢ ℕ ∈ V | |
3 | resiexg 7622 | . . . . 5 ⊢ (ℕ ∈ V → ( I ↾ ℕ) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ℕ) ∈ V |
5 | 1, 4 | eqeltri 2849 | . . 3 ⊢ ndx ∈ V |
6 | ndxarg.1 | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
7 | 5, 6 | strfvn 16553 | . 2 ⊢ (𝐸‘ndx) = (ndx‘𝑁) |
8 | 1 | fveq1i 6657 | . 2 ⊢ (ndx‘𝑁) = (( I ↾ ℕ)‘𝑁) |
9 | ndxarg.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
10 | fvresi 6924 | . . 3 ⊢ (𝑁 ∈ ℕ → (( I ↾ ℕ)‘𝑁) = 𝑁) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (( I ↾ ℕ)‘𝑁) = 𝑁 |
12 | 7, 8, 11 | 3eqtri 2786 | 1 ⊢ (𝐸‘ndx) = 𝑁 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 Vcvv 3410 I cid 5427 ↾ cres 5524 ‘cfv 6333 ℕcn 11664 ndxcnx 16528 Slot cslot 16530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-1cn 10623 ax-addcl 10625 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-ov 7151 df-om 7578 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-nn 11665 df-ndx 16534 df-slot 16535 |
This theorem is referenced by: ndxid 16557 basendx 16595 basendxnn 16596 resslem 16605 plusgndx 16643 2strstr 16650 2strstr1 16653 2strop1 16655 basendxnplusgndx 16656 mulrndx 16663 basendxnmulrndx 16666 starvndx 16671 scandx 16680 vscandx 16682 ipndx 16689 tsetndx 16707 plendx 16714 ocndx 16721 dsndx 16723 unifndx 16725 homndx 16735 ccondx 16737 slotsbhcdif 16741 oppglem 18535 symgvalstruct 18582 mgplem 19302 opprlem 19439 rmodislmod 19760 sralem 20007 zlmlem 20276 znbaslem 20296 opsrbaslem 20799 tnglem 23332 itvndx 26323 lngndx 26324 ttglem 26759 cchhllem 26770 edgfndxnn 26874 baseltedgf 26876 resvlem 31046 hlhilslem 39504 mnringnmulrd 41285 |
Copyright terms: Public domain | W3C validator |