Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ndxarg | Structured version Visualization version GIF version |
Description: Get the numeric argument from a defined structure component extractor such as df-base 16913. (Contributed by Mario Carneiro, 6-Oct-2013.) |
Ref | Expression |
---|---|
ndxarg.e | ⊢ 𝐸 = Slot 𝑁 |
ndxarg.n | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
ndxarg | ⊢ (𝐸‘ndx) = 𝑁 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ndx 16895 | . . . 4 ⊢ ndx = ( I ↾ ℕ) | |
2 | nnex 11979 | . . . . 5 ⊢ ℕ ∈ V | |
3 | resiexg 7761 | . . . . 5 ⊢ (ℕ ∈ V → ( I ↾ ℕ) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ℕ) ∈ V |
5 | 1, 4 | eqeltri 2835 | . . 3 ⊢ ndx ∈ V |
6 | ndxarg.e | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
7 | 5, 6 | strfvn 16887 | . 2 ⊢ (𝐸‘ndx) = (ndx‘𝑁) |
8 | 1 | fveq1i 6775 | . 2 ⊢ (ndx‘𝑁) = (( I ↾ ℕ)‘𝑁) |
9 | ndxarg.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
10 | fvresi 7045 | . . 3 ⊢ (𝑁 ∈ ℕ → (( I ↾ ℕ)‘𝑁) = 𝑁) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (( I ↾ ℕ)‘𝑁) = 𝑁 |
12 | 7, 8, 11 | 3eqtri 2770 | 1 ⊢ (𝐸‘ndx) = 𝑁 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 I cid 5488 ↾ cres 5591 ‘cfv 6433 ℕcn 11973 Slot cslot 16882 ndxcnx 16894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-slot 16883 df-ndx 16895 |
This theorem is referenced by: ndxid 16898 basendx 16921 basendxnnOLD 16923 2strstr 16934 2strstr1OLD 16938 2strop1 16940 resslemOLD 16952 plusgndx 16988 basendxnplusgndxOLD 16993 mulrndx 17003 basendxnmulrndxOLD 17006 starvndx 17012 scandx 17024 vscandx 17029 ipndx 17040 tsetndx 17062 plendx 17076 ocndx 17091 dsndx 17095 unifndx 17105 homndx 17121 ccondx 17123 slotsbhcdifOLD 17126 oppglemOLD 18955 symgvalstructOLD 19005 mgplemOLD 19725 opprlemOLD 19868 rmodislmodOLD 20192 sralemOLD 20440 zlmlemOLD 20719 znbaslemOLD 20743 opsrbaslemOLD 21251 tnglemOLD 23797 itvndx 26798 lngndx 26799 ttglemOLD 27239 cchhllemOLD 27255 edgfndx 27359 baseltedgfOLD 27364 resvlemOLD 31531 hlhilslemOLD 39953 mnringnmulrdOLD 41828 |
Copyright terms: Public domain | W3C validator |