![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndxarg | Structured version Visualization version GIF version |
Description: Get the numeric argument from a defined structure component extractor such as df-base 17144. (Contributed by Mario Carneiro, 6-Oct-2013.) |
Ref | Expression |
---|---|
ndxarg.e | β’ πΈ = Slot π |
ndxarg.n | β’ π β β |
Ref | Expression |
---|---|
ndxarg | β’ (πΈβndx) = π |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ndx 17126 | . . . 4 β’ ndx = ( I βΎ β) | |
2 | nnex 12217 | . . . . 5 β’ β β V | |
3 | resiexg 7904 | . . . . 5 β’ (β β V β ( I βΎ β) β V) | |
4 | 2, 3 | ax-mp 5 | . . . 4 β’ ( I βΎ β) β V |
5 | 1, 4 | eqeltri 2829 | . . 3 β’ ndx β V |
6 | ndxarg.e | . . 3 β’ πΈ = Slot π | |
7 | 5, 6 | strfvn 17118 | . 2 β’ (πΈβndx) = (ndxβπ) |
8 | 1 | fveq1i 6892 | . 2 β’ (ndxβπ) = (( I βΎ β)βπ) |
9 | ndxarg.n | . . 3 β’ π β β | |
10 | fvresi 7170 | . . 3 β’ (π β β β (( I βΎ β)βπ) = π) | |
11 | 9, 10 | ax-mp 5 | . 2 β’ (( I βΎ β)βπ) = π |
12 | 7, 8, 11 | 3eqtri 2764 | 1 β’ (πΈβndx) = π |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 β wcel 2106 Vcvv 3474 I cid 5573 βΎ cres 5678 βcfv 6543 βcn 12211 Slot cslot 17113 ndxcnx 17125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-1cn 11167 ax-addcl 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-nn 12212 df-slot 17114 df-ndx 17126 |
This theorem is referenced by: ndxid 17129 basendx 17152 basendxnnOLD 17154 2strstr 17165 2strstr1OLD 17169 2strop1 17171 resslemOLD 17186 plusgndx 17222 basendxnplusgndxOLD 17227 mulrndx 17237 basendxnmulrndxOLD 17240 starvndx 17246 scandx 17258 vscandx 17263 ipndx 17274 tsetndx 17296 plendx 17310 ocndx 17325 dsndx 17329 unifndx 17339 homndx 17355 ccondx 17357 slotsbhcdifOLD 17360 oppglemOLD 19214 symgvalstructOLD 19264 mgplemOLD 19991 opprlemOLD 20155 rmodislmodOLD 20540 sralemOLD 20790 zlmlemOLD 21066 znbaslemOLD 21090 opsrbaslemOLD 21604 tnglemOLD 24149 itvndx 27685 lngndx 27686 ttglemOLD 28126 cchhllemOLD 28142 edgfndx 28246 baseltedgfOLD 28251 eufndx 32385 resvlemOLD 32441 hlhilslemOLD 40805 mnringnmulrdOLD 42959 |
Copyright terms: Public domain | W3C validator |