![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndxarg | Structured version Visualization version GIF version |
Description: Get the numeric argument from a defined structure component extractor such as df-base 17259. (Contributed by Mario Carneiro, 6-Oct-2013.) |
Ref | Expression |
---|---|
ndxarg.e | ⊢ 𝐸 = Slot 𝑁 |
ndxarg.n | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
ndxarg | ⊢ (𝐸‘ndx) = 𝑁 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ndx 17241 | . . . 4 ⊢ ndx = ( I ↾ ℕ) | |
2 | nnex 12299 | . . . . 5 ⊢ ℕ ∈ V | |
3 | resiexg 7952 | . . . . 5 ⊢ (ℕ ∈ V → ( I ↾ ℕ) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ ℕ) ∈ V |
5 | 1, 4 | eqeltri 2840 | . . 3 ⊢ ndx ∈ V |
6 | ndxarg.e | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
7 | 5, 6 | strfvn 17233 | . 2 ⊢ (𝐸‘ndx) = (ndx‘𝑁) |
8 | 1 | fveq1i 6921 | . 2 ⊢ (ndx‘𝑁) = (( I ↾ ℕ)‘𝑁) |
9 | ndxarg.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
10 | fvresi 7207 | . . 3 ⊢ (𝑁 ∈ ℕ → (( I ↾ ℕ)‘𝑁) = 𝑁) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (( I ↾ ℕ)‘𝑁) = 𝑁 |
12 | 7, 8, 11 | 3eqtri 2772 | 1 ⊢ (𝐸‘ndx) = 𝑁 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 I cid 5592 ↾ cres 5702 ‘cfv 6573 ℕcn 12293 Slot cslot 17228 ndxcnx 17240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-slot 17229 df-ndx 17241 |
This theorem is referenced by: ndxid 17244 basendx 17267 basendxnnOLD 17269 2strstr 17280 2strstr1OLD 17284 2strop1 17286 resslemOLD 17301 plusgndx 17337 basendxnplusgndxOLD 17342 mulrndx 17352 basendxnmulrndxOLD 17355 starvndx 17361 scandx 17373 vscandx 17378 ipndx 17389 tsetndx 17411 plendx 17425 ocndx 17440 dsndx 17444 unifndx 17454 homndx 17470 ccondx 17472 slotsbhcdifOLD 17475 oppglemOLD 19391 symgvalstructOLD 19439 mgplemOLD 20166 opprlemOLD 20366 rmodislmodOLD 20951 sralemOLD 21199 zlmlemOLD 21551 znbaslemOLD 21577 opsrbaslemOLD 22091 tnglemOLD 24675 itvndx 28463 lngndx 28464 ttglemOLD 28904 cchhllemOLD 28920 edgfndx 29024 baseltedgfOLD 29029 eufndx 33259 resvlemOLD 33323 hlhilslemOLD 41896 mnringnmulrdOLD 44179 |
Copyright terms: Public domain | W3C validator |