| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baseid | Structured version Visualization version GIF version | ||
| Description: Utility theorem: index-independent form of df-base 17123. (Contributed by NM, 20-Oct-2012.) |
| Ref | Expression |
|---|---|
| baseid | ⊢ Base = Slot (Base‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-base 17123 | . 2 ⊢ Base = Slot 1 | |
| 2 | 1nn 12143 | . 2 ⊢ 1 ∈ ℕ | |
| 3 | 1, 2 | ndxid 17110 | 1 ⊢ Base = Slot (Base‘ndx) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ‘cfv 6486 1c1 11014 Slot cslot 17094 ndxcnx 17106 Basecbs 17122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12133 df-slot 17095 df-ndx 17107 df-base 17123 |
| This theorem is referenced by: basfn 17126 base0 17127 basndxelwund 17133 opelstrbas 17135 1strbas 17137 2strbas 17141 ressbas 17149 ressval3d 17159 wunress 17162 rngbase 17205 srngbase 17216 lmodbase 17232 ipsbase 17243 phlbase 17253 topgrpbas 17268 otpsbas 17283 odrngbas 17310 prdsval 17361 prdsbas 17363 imasbas 17418 oppcbas 17626 rescbas 17738 rescabs 17742 wunfunc 17810 wunnat 17868 fucbas 17872 setcbas 17987 catcbas 18010 catcbaselcl 18023 catcfuccl 18027 estrcbas 18033 estrcbasbas 18039 estrreslem1 18045 catcxpccl 18115 odubas 18199 ipobas 18439 grpss 18869 oppgbas 19265 mgpbas 20065 opprbas 20263 ringcbasbas 20590 rmodislmod 20865 srabase 21113 rlmscaf 21143 islidl 21154 lidlrsppropd 21183 rspsn 21272 cnfldbas 21297 cnfldbasOLD 21312 zlmbas 21456 znbas2 21478 thlbas 21635 psrbas 21872 opsrbas 21986 ply1tmcl 22187 ply1scltm 22196 ply1sclf 22200 ply1scl0OLD 22206 ply1scl1OLD 22209 matbas 22329 tuslem 24182 setsmsbas 24391 tngbas 24557 nrgtrg 24606 trkgbas 28424 ttgbas 28856 setsvtx 29015 rlocbas 33241 rlocaddval 33242 rlocmulval 33243 resvbas 33306 idlsrgbas 33476 bj-endbase 37381 hlhilsbase 42058 opprmndb 42629 opprgrpb 42630 opprablb 42631 algbase 43291 mnringbased 44332 cznrnglem 48383 cznabel 48384 rngcbasALTV 48390 ringcbasALTV 48424 ringcbasbasALTV 48436 catbas 49351 prstcbas 49679 mndtcbasval 49705 |
| Copyright terms: Public domain | W3C validator |