| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baseid | Structured version Visualization version GIF version | ||
| Description: Utility theorem: index-independent form of df-base 17118. (Contributed by NM, 20-Oct-2012.) |
| Ref | Expression |
|---|---|
| baseid | ⊢ Base = Slot (Base‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-base 17118 | . 2 ⊢ Base = Slot 1 | |
| 2 | 1nn 12133 | . 2 ⊢ 1 ∈ ℕ | |
| 3 | 1, 2 | ndxid 17105 | 1 ⊢ Base = Slot (Base‘ndx) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ‘cfv 6481 1c1 11004 Slot cslot 17089 ndxcnx 17101 Basecbs 17117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-slot 17090 df-ndx 17102 df-base 17118 |
| This theorem is referenced by: basfn 17121 base0 17122 basndxelwund 17128 opelstrbas 17130 1strbas 17132 2strbas 17136 ressbas 17144 ressval3d 17154 wunress 17157 rngbase 17200 srngbase 17211 lmodbase 17227 ipsbase 17238 phlbase 17248 topgrpbas 17263 otpsbas 17278 odrngbas 17305 prdsval 17356 prdsbas 17358 imasbas 17413 oppcbas 17621 rescbas 17733 rescabs 17737 wunfunc 17805 wunnat 17863 fucbas 17867 setcbas 17982 catcbas 18005 catcbaselcl 18018 catcfuccl 18022 estrcbas 18028 estrcbasbas 18034 estrreslem1 18040 catcxpccl 18110 odubas 18194 ipobas 18434 grpss 18864 oppgbas 19261 mgpbas 20061 opprbas 20259 ringcbasbas 20586 rmodislmod 20861 srabase 21109 rlmscaf 21139 islidl 21150 lidlrsppropd 21179 rspsn 21268 cnfldbas 21293 cnfldbasOLD 21308 zlmbas 21452 znbas2 21474 thlbas 21631 psrbas 21868 opsrbas 21983 ply1tmcl 22184 ply1scltm 22193 ply1sclf 22197 ply1scl0OLD 22203 ply1scl1OLD 22206 matbas 22326 tuslem 24179 setsmsbas 24388 tngbas 24554 nrgtrg 24603 trkgbas 28421 ttgbas 28853 setsvtx 29011 rlocbas 33229 rlocaddval 33230 rlocmulval 33231 resvbas 33294 idlsrgbas 33464 bj-endbase 37349 hlhilsbase 41977 opprmndb 42543 opprgrpb 42544 opprablb 42545 algbase 43206 mnringbased 44247 cznrnglem 48289 cznabel 48290 rngcbasALTV 48296 ringcbasALTV 48330 ringcbasbasALTV 48342 catbas 49257 prstcbas 49585 mndtcbasval 49611 |
| Copyright terms: Public domain | W3C validator |