![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > baseid | Structured version Visualization version GIF version |
Description: Utility theorem: index-independent form of df-base 17259. (Contributed by NM, 20-Oct-2012.) |
Ref | Expression |
---|---|
baseid | ⊢ Base = Slot (Base‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base 17259 | . 2 ⊢ Base = Slot 1 | |
2 | 1nn 12304 | . 2 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | ndxid 17244 | 1 ⊢ Base = Slot (Base‘ndx) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ‘cfv 6573 1c1 11185 Slot cslot 17228 ndxcnx 17240 Basecbs 17258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-slot 17229 df-ndx 17241 df-base 17259 |
This theorem is referenced by: basfn 17262 base0 17263 basndxelwund 17270 opelstrbas 17272 1strbas 17275 1strbasOLD 17276 2strbas 17281 2strbas1 17285 ressbas 17293 ressbasOLD 17294 ressval3d 17305 wunress 17309 wunressOLD 17310 rngbase 17358 srngbase 17369 lmodbase 17385 ipsbase 17396 phlbase 17406 topgrpbas 17421 otpsbas 17436 odrngbas 17463 prdsval 17515 prdsbas 17517 imasbas 17572 oppcbas 17777 oppcbasOLD 17778 rescbas 17890 rescbasOLD 17891 rescabs 17896 rescabsOLD 17897 wunfunc 17965 wunnat 18024 fucbas 18029 setcbas 18145 catcbas 18168 catcbaselcl 18181 catcfuccl 18186 estrcbas 18193 estrcbasbas 18199 estrreslem1 18205 catcxpccl 18276 odubas 18361 odubasOLD 18362 ipobas 18601 grpss 18994 oppgbas 19392 mgpbas 20167 opprbas 20367 ringcbasbas 20695 rmodislmod 20950 rmodislmodOLD 20951 srabase 21200 rlmscaf 21237 islidl 21248 lidlrsppropd 21277 rspsn 21366 cnfldbas 21391 cnfldbasOLD 21406 zlmbas 21552 znbas2 21578 thlbas 21737 thlbasOLD 21738 psrbas 21976 opsrbas 22092 ply1tmcl 22296 ply1scltm 22305 ply1sclf 22309 ply1scl0OLD 22315 ply1scl1OLD 22318 matbas 22438 tuslem 24296 tuslemOLD 24297 setsmsbas 24506 setsmsbasOLD 24507 tngbas 24676 nrgtrg 24732 trkgbas 28471 ttgbas 28905 setsvtx 29070 rlocbas 33239 rlocaddval 33240 rlocmulval 33241 resvbas 33324 idlsrgbas 33497 bj-endbase 37282 hlhilsbase 41897 opprmndb 42466 opprgrpb 42467 opprablb 42468 algbase 43135 mnringbased 44180 cznrnglem 47982 cznabel 47983 rngcbasALTV 47989 ringcbasALTV 48023 ringcbasbasALTV 48035 prstcbas 48734 mndtcbasval 48753 |
Copyright terms: Public domain | W3C validator |