| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baseid | Structured version Visualization version GIF version | ||
| Description: Utility theorem: index-independent form of df-base 17187. (Contributed by NM, 20-Oct-2012.) |
| Ref | Expression |
|---|---|
| baseid | ⊢ Base = Slot (Base‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-base 17187 | . 2 ⊢ Base = Slot 1 | |
| 2 | 1nn 12204 | . 2 ⊢ 1 ∈ ℕ | |
| 3 | 1, 2 | ndxid 17174 | 1 ⊢ Base = Slot (Base‘ndx) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ‘cfv 6514 1c1 11076 Slot cslot 17158 ndxcnx 17170 Basecbs 17186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-slot 17159 df-ndx 17171 df-base 17187 |
| This theorem is referenced by: basfn 17190 base0 17191 basndxelwund 17197 opelstrbas 17199 1strbas 17201 2strbas 17205 ressbas 17213 ressval3d 17223 wunress 17226 rngbase 17269 srngbase 17280 lmodbase 17296 ipsbase 17307 phlbase 17317 topgrpbas 17332 otpsbas 17347 odrngbas 17374 prdsval 17425 prdsbas 17427 imasbas 17482 oppcbas 17686 rescbas 17798 rescabs 17802 wunfunc 17870 wunnat 17928 fucbas 17932 setcbas 18047 catcbas 18070 catcbaselcl 18083 catcfuccl 18087 estrcbas 18093 estrcbasbas 18099 estrreslem1 18105 catcxpccl 18175 odubas 18259 ipobas 18497 grpss 18893 oppgbas 19290 mgpbas 20061 opprbas 20259 ringcbasbas 20589 rmodislmod 20843 srabase 21091 rlmscaf 21121 islidl 21132 lidlrsppropd 21161 rspsn 21250 cnfldbas 21275 cnfldbasOLD 21290 zlmbas 21434 znbas2 21456 thlbas 21612 psrbas 21849 opsrbas 21964 ply1tmcl 22165 ply1scltm 22174 ply1sclf 22178 ply1scl0OLD 22184 ply1scl1OLD 22187 matbas 22307 tuslem 24161 setsmsbas 24370 tngbas 24536 nrgtrg 24585 trkgbas 28379 ttgbas 28811 setsvtx 28969 rlocbas 33225 rlocaddval 33226 rlocmulval 33227 resvbas 33313 idlsrgbas 33482 bj-endbase 37311 hlhilsbase 41940 opprmndb 42506 opprgrpb 42507 opprablb 42508 algbase 43170 mnringbased 44211 cznrnglem 48251 cznabel 48252 rngcbasALTV 48258 ringcbasALTV 48292 ringcbasbasALTV 48304 catbas 49219 prstcbas 49547 mndtcbasval 49573 |
| Copyright terms: Public domain | W3C validator |