| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baseid | Structured version Visualization version GIF version | ||
| Description: Utility theorem: index-independent form of df-base 17180. (Contributed by NM, 20-Oct-2012.) |
| Ref | Expression |
|---|---|
| baseid | ⊢ Base = Slot (Base‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-base 17180 | . 2 ⊢ Base = Slot 1 | |
| 2 | 1nn 12197 | . 2 ⊢ 1 ∈ ℕ | |
| 3 | 1, 2 | ndxid 17167 | 1 ⊢ Base = Slot (Base‘ndx) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ‘cfv 6511 1c1 11069 Slot cslot 17151 ndxcnx 17163 Basecbs 17179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-slot 17152 df-ndx 17164 df-base 17180 |
| This theorem is referenced by: basfn 17183 base0 17184 basndxelwund 17190 opelstrbas 17192 1strbas 17194 2strbas 17198 ressbas 17206 ressval3d 17216 wunress 17219 rngbase 17262 srngbase 17273 lmodbase 17289 ipsbase 17300 phlbase 17310 topgrpbas 17325 otpsbas 17340 odrngbas 17367 prdsval 17418 prdsbas 17420 imasbas 17475 oppcbas 17679 rescbas 17791 rescabs 17795 wunfunc 17863 wunnat 17921 fucbas 17925 setcbas 18040 catcbas 18063 catcbaselcl 18076 catcfuccl 18080 estrcbas 18086 estrcbasbas 18092 estrreslem1 18098 catcxpccl 18168 odubas 18252 ipobas 18490 grpss 18886 oppgbas 19283 mgpbas 20054 opprbas 20252 ringcbasbas 20582 rmodislmod 20836 srabase 21084 rlmscaf 21114 islidl 21125 lidlrsppropd 21154 rspsn 21243 cnfldbas 21268 cnfldbasOLD 21283 zlmbas 21427 znbas2 21449 thlbas 21605 psrbas 21842 opsrbas 21957 ply1tmcl 22158 ply1scltm 22167 ply1sclf 22171 ply1scl0OLD 22177 ply1scl1OLD 22180 matbas 22300 tuslem 24154 setsmsbas 24363 tngbas 24529 nrgtrg 24578 trkgbas 28372 ttgbas 28804 setsvtx 28962 rlocbas 33218 rlocaddval 33219 rlocmulval 33220 resvbas 33306 idlsrgbas 33475 bj-endbase 37304 hlhilsbase 41933 opprmndb 42499 opprgrpb 42500 opprablb 42501 algbase 43163 mnringbased 44204 cznrnglem 48247 cznabel 48248 rngcbasALTV 48254 ringcbasALTV 48288 ringcbasbasALTV 48300 catbas 49215 prstcbas 49543 mndtcbasval 49569 |
| Copyright terms: Public domain | W3C validator |