Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > baseid | Structured version Visualization version GIF version |
Description: Utility theorem: index-independent form of df-base 16841. (Contributed by NM, 20-Oct-2012.) |
Ref | Expression |
---|---|
baseid | ⊢ Base = Slot (Base‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base 16841 | . 2 ⊢ Base = Slot 1 | |
2 | 1nn 11914 | . 2 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | ndxid 16826 | 1 ⊢ Base = Slot (Base‘ndx) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ‘cfv 6418 1c1 10803 Slot cslot 16810 ndxcnx 16822 Basecbs 16840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-slot 16811 df-ndx 16823 df-base 16841 |
This theorem is referenced by: basfn 16844 base0 16845 basndxelwund 16852 opelstrbas 16854 1strbas 16856 2strbas 16861 2strbas1 16865 ressbas 16873 ressbasOLD 16874 ressval3d 16882 wunress 16886 wunressOLD 16887 rngbase 16935 srngbase 16946 lmodbase 16962 ipsbase 16972 phlbase 16982 topgrpbas 16996 otpsbas 17010 odrngbas 17033 prdsval 17083 prdsbas 17085 imasbas 17140 oppcbas 17345 oppcbasOLD 17346 rescbas 17458 rescbasOLD 17459 rescabs 17464 wunfunc 17530 wunnat 17588 fucbas 17593 setcbas 17709 catcbas 17732 catcbaselcl 17745 catcfuccl 17750 estrcbas 17757 estrcbasbas 17763 estrreslem1 17769 catcxpccl 17840 odubas 17925 ipobas 18164 grpss 18512 oppgbas 18871 mgpbas 19641 opprbas 19784 rmodislmod 20106 rmodislmodOLD 20107 srabase 20356 rlmscaf 20392 islidl 20395 lidlrsppropd 20414 rspsn 20438 cnfldbas 20514 zlmbas 20632 znbas2 20656 thlbas 20813 psrbas 21057 opsrbas 21162 ply1tmcl 21353 ply1scltm 21362 ply1sclf 21366 ply1scl0 21371 ply1scl1 21373 matbas 21470 tuslem 23326 tuslemOLD 23327 setsmsbas 23536 tngbas 23704 nrgtrg 23760 trkgbas 26710 ttgbas 27143 setsvtx 27308 resvbas 31434 idlsrgbas 31551 bj-endbase 35414 hlhilsbase 39881 algbase 40919 mnringbased 41718 cznrnglem 45399 cznabel 45400 rngcbasALTV 45429 ringcbasbas 45480 ringcbasALTV 45492 ringcbasbasALTV 45504 prstcbas 46236 mndtcbasval 46253 |
Copyright terms: Public domain | W3C validator |