Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > baseid | Structured version Visualization version GIF version |
Description: Utility theorem: index-independent form of df-base 16913. (Contributed by NM, 20-Oct-2012.) |
Ref | Expression |
---|---|
baseid | ⊢ Base = Slot (Base‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base 16913 | . 2 ⊢ Base = Slot 1 | |
2 | 1nn 11984 | . 2 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | ndxid 16898 | 1 ⊢ Base = Slot (Base‘ndx) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ‘cfv 6433 1c1 10872 Slot cslot 16882 ndxcnx 16894 Basecbs 16912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-slot 16883 df-ndx 16895 df-base 16913 |
This theorem is referenced by: basfn 16916 base0 16917 basndxelwund 16924 opelstrbas 16926 1strbas 16929 1strbasOLD 16930 2strbas 16935 2strbas1 16939 ressbas 16947 ressbasOLD 16948 ressval3d 16956 wunress 16960 wunressOLD 16961 rngbase 17009 srngbase 17020 lmodbase 17036 ipsbase 17047 phlbase 17057 topgrpbas 17072 otpsbas 17087 odrngbas 17114 prdsval 17166 prdsbas 17168 imasbas 17223 oppcbas 17428 oppcbasOLD 17429 rescbas 17541 rescbasOLD 17542 rescabs 17547 rescabsOLD 17548 wunfunc 17614 wunnat 17672 fucbas 17677 setcbas 17793 catcbas 17816 catcbaselcl 17829 catcfuccl 17834 estrcbas 17841 estrcbasbas 17847 estrreslem1 17853 catcxpccl 17924 odubas 18009 odubasOLD 18010 ipobas 18249 grpss 18597 oppgbas 18956 mgpbas 19726 opprbas 19869 rmodislmod 20191 rmodislmodOLD 20192 srabase 20441 rlmscaf 20479 islidl 20482 lidlrsppropd 20501 rspsn 20525 cnfldbas 20601 zlmbas 20720 znbas2 20744 thlbas 20901 thlbasOLD 20902 psrbas 21147 opsrbas 21252 ply1tmcl 21443 ply1scltm 21452 ply1sclf 21456 ply1scl0 21461 ply1scl1 21463 matbas 21560 tuslem 23418 tuslemOLD 23419 setsmsbas 23628 setsmsbasOLD 23629 tngbas 23798 nrgtrg 23854 trkgbas 26806 ttgbas 27240 setsvtx 27405 resvbas 31532 idlsrgbas 31649 bj-endbase 35487 hlhilsbase 39954 algbase 41003 mnringbased 41829 cznrnglem 45511 cznabel 45512 rngcbasALTV 45541 ringcbasbas 45592 ringcbasALTV 45604 ringcbasbasALTV 45616 prstcbas 46348 mndtcbasval 46367 |
Copyright terms: Public domain | W3C validator |