![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > baseid | Structured version Visualization version GIF version |
Description: Utility theorem: index-independent form of df-base 16235. (Contributed by NM, 20-Oct-2012.) |
Ref | Expression |
---|---|
baseid | ⊢ Base = Slot (Base‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base 16235 | . 2 ⊢ Base = Slot 1 | |
2 | 1nn 11370 | . 2 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | ndxid 16255 | 1 ⊢ Base = Slot (Base‘ndx) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 ‘cfv 6127 1c1 10260 ndxcnx 16226 Slot cslot 16228 Basecbs 16229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-1cn 10317 ax-addcl 10319 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-nn 11358 df-ndx 16232 df-slot 16233 df-base 16235 |
This theorem is referenced by: ressbas 16300 opelstrbas 16344 1strbas 16346 2strbas 16350 2strbas1 16353 rngbase 16367 srngbase 16375 lmodbase 16384 ipsbase 16391 phlbase 16401 topgrpbas 16409 otpsbas 16416 odrngbas 16427 prdsval 16475 prdsbas 16477 imasbas 16532 oppcbas 16737 rescbas 16848 rescabs 16852 fucbas 16979 setcbas 17087 catcbas 17106 estrcbas 17124 xpcbas 17178 odubas 17493 ipobas 17515 grpss 17801 rmodislmod 19294 islidl 19579 lidlrsppropd 19598 rspsn 19622 psrbas 19746 cnfldbas 20117 thlbas 20410 matbas 20593 tuslem 22448 setsmsbas 22657 trkgbas 25764 eengbas 26287 setsvtx 26340 algbase 38586 cznrnglem 42814 cznabel 42815 rngcbasALTV 42844 ringcbasALTV 42907 |
Copyright terms: Public domain | W3C validator |