| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baseid | Structured version Visualization version GIF version | ||
| Description: Utility theorem: index-independent form of df-base 17229. (Contributed by NM, 20-Oct-2012.) |
| Ref | Expression |
|---|---|
| baseid | ⊢ Base = Slot (Base‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-base 17229 | . 2 ⊢ Base = Slot 1 | |
| 2 | 1nn 12251 | . 2 ⊢ 1 ∈ ℕ | |
| 3 | 1, 2 | ndxid 17216 | 1 ⊢ Base = Slot (Base‘ndx) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ‘cfv 6531 1c1 11130 Slot cslot 17200 ndxcnx 17212 Basecbs 17228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 df-slot 17201 df-ndx 17213 df-base 17229 |
| This theorem is referenced by: basfn 17232 base0 17233 basndxelwund 17239 opelstrbas 17241 1strbas 17244 1strbasOLD 17245 2strbas 17249 ressbas 17257 ressval3d 17267 wunress 17270 rngbase 17313 srngbase 17324 lmodbase 17340 ipsbase 17351 phlbase 17361 topgrpbas 17376 otpsbas 17391 odrngbas 17418 prdsval 17469 prdsbas 17471 imasbas 17526 oppcbas 17730 rescbas 17842 rescabs 17846 wunfunc 17914 wunnat 17972 fucbas 17976 setcbas 18091 catcbas 18114 catcbaselcl 18127 catcfuccl 18131 estrcbas 18137 estrcbasbas 18143 estrreslem1 18149 catcxpccl 18219 odubas 18303 ipobas 18541 grpss 18937 oppgbas 19334 mgpbas 20105 opprbas 20303 ringcbasbas 20633 rmodislmod 20887 srabase 21135 rlmscaf 21165 islidl 21176 lidlrsppropd 21205 rspsn 21294 cnfldbas 21319 cnfldbasOLD 21334 zlmbas 21478 znbas2 21500 thlbas 21656 psrbas 21893 opsrbas 22008 ply1tmcl 22209 ply1scltm 22218 ply1sclf 22222 ply1scl0OLD 22228 ply1scl1OLD 22231 matbas 22351 tuslem 24205 setsmsbas 24414 tngbas 24580 nrgtrg 24629 trkgbas 28424 ttgbas 28856 setsvtx 29014 rlocbas 33262 rlocaddval 33263 rlocmulval 33264 resvbas 33350 idlsrgbas 33519 bj-endbase 37334 hlhilsbase 41958 opprmndb 42534 opprgrpb 42535 opprablb 42536 algbase 43198 mnringbased 44239 cznrnglem 48234 cznabel 48235 rngcbasALTV 48241 ringcbasALTV 48275 ringcbasbasALTV 48287 catbas 49146 prstcbas 49431 mndtcbasval 49457 |
| Copyright terms: Public domain | W3C validator |