| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baseid | Structured version Visualization version GIF version | ||
| Description: Utility theorem: index-independent form of df-base 17139. (Contributed by NM, 20-Oct-2012.) |
| Ref | Expression |
|---|---|
| baseid | ⊢ Base = Slot (Base‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-base 17139 | . 2 ⊢ Base = Slot 1 | |
| 2 | 1nn 12157 | . 2 ⊢ 1 ∈ ℕ | |
| 3 | 1, 2 | ndxid 17126 | 1 ⊢ Base = Slot (Base‘ndx) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ‘cfv 6486 1c1 11029 Slot cslot 17110 ndxcnx 17122 Basecbs 17138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-slot 17111 df-ndx 17123 df-base 17139 |
| This theorem is referenced by: basfn 17142 base0 17143 basndxelwund 17149 opelstrbas 17151 1strbas 17153 2strbas 17157 ressbas 17165 ressval3d 17175 wunress 17178 rngbase 17221 srngbase 17232 lmodbase 17248 ipsbase 17259 phlbase 17269 topgrpbas 17284 otpsbas 17299 odrngbas 17326 prdsval 17377 prdsbas 17379 imasbas 17434 oppcbas 17642 rescbas 17754 rescabs 17758 wunfunc 17826 wunnat 17884 fucbas 17888 setcbas 18003 catcbas 18026 catcbaselcl 18039 catcfuccl 18043 estrcbas 18049 estrcbasbas 18055 estrreslem1 18061 catcxpccl 18131 odubas 18215 ipobas 18455 grpss 18851 oppgbas 19248 mgpbas 20048 opprbas 20246 ringcbasbas 20576 rmodislmod 20851 srabase 21099 rlmscaf 21129 islidl 21140 lidlrsppropd 21169 rspsn 21258 cnfldbas 21283 cnfldbasOLD 21298 zlmbas 21442 znbas2 21464 thlbas 21621 psrbas 21858 opsrbas 21973 ply1tmcl 22174 ply1scltm 22183 ply1sclf 22187 ply1scl0OLD 22193 ply1scl1OLD 22196 matbas 22316 tuslem 24170 setsmsbas 24379 tngbas 24545 nrgtrg 24594 trkgbas 28408 ttgbas 28840 setsvtx 28998 rlocbas 33217 rlocaddval 33218 rlocmulval 33219 resvbas 33282 idlsrgbas 33451 bj-endbase 37289 hlhilsbase 41918 opprmndb 42484 opprgrpb 42485 opprablb 42486 algbase 43147 mnringbased 44188 cznrnglem 48244 cznabel 48245 rngcbasALTV 48251 ringcbasALTV 48285 ringcbasbasALTV 48297 catbas 49212 prstcbas 49540 mndtcbasval 49566 |
| Copyright terms: Public domain | W3C validator |