| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baseid | Structured version Visualization version GIF version | ||
| Description: Utility theorem: index-independent form of df-base 17227. (Contributed by NM, 20-Oct-2012.) |
| Ref | Expression |
|---|---|
| baseid | ⊢ Base = Slot (Base‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-base 17227 | . 2 ⊢ Base = Slot 1 | |
| 2 | 1nn 12249 | . 2 ⊢ 1 ∈ ℕ | |
| 3 | 1, 2 | ndxid 17214 | 1 ⊢ Base = Slot (Base‘ndx) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ‘cfv 6530 1c1 11128 Slot cslot 17198 ndxcnx 17210 Basecbs 17226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-1cn 11185 ax-addcl 11187 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12239 df-slot 17199 df-ndx 17211 df-base 17227 |
| This theorem is referenced by: basfn 17230 base0 17231 basndxelwund 17237 opelstrbas 17239 1strbas 17242 1strbasOLD 17243 2strbas 17247 ressbas 17255 ressval3d 17265 wunress 17268 rngbase 17311 srngbase 17322 lmodbase 17338 ipsbase 17349 phlbase 17359 topgrpbas 17374 otpsbas 17389 odrngbas 17416 prdsval 17467 prdsbas 17469 imasbas 17524 oppcbas 17728 rescbas 17840 rescabs 17844 wunfunc 17912 wunnat 17970 fucbas 17974 setcbas 18089 catcbas 18112 catcbaselcl 18125 catcfuccl 18129 estrcbas 18135 estrcbasbas 18141 estrreslem1 18147 catcxpccl 18217 odubas 18301 ipobas 18539 grpss 18935 oppgbas 19332 mgpbas 20103 opprbas 20301 ringcbasbas 20631 rmodislmod 20885 srabase 21133 rlmscaf 21163 islidl 21174 lidlrsppropd 21203 rspsn 21292 cnfldbas 21317 cnfldbasOLD 21332 zlmbas 21476 znbas2 21498 thlbas 21654 psrbas 21891 opsrbas 22006 ply1tmcl 22207 ply1scltm 22216 ply1sclf 22220 ply1scl0OLD 22226 ply1scl1OLD 22229 matbas 22349 tuslem 24203 setsmsbas 24412 tngbas 24578 nrgtrg 24627 trkgbas 28370 ttgbas 28802 setsvtx 28960 rlocbas 33208 rlocaddval 33209 rlocmulval 33210 resvbas 33296 idlsrgbas 33465 bj-endbase 37280 hlhilsbase 41904 opprmndb 42481 opprgrpb 42482 opprablb 42483 algbase 43145 mnringbased 44187 cznrnglem 48182 cznabel 48183 rngcbasALTV 48189 ringcbasALTV 48223 ringcbasbasALTV 48235 catbas 49094 prstcbas 49379 mndtcbasval 49405 |
| Copyright terms: Public domain | W3C validator |