![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > baseid | Structured version Visualization version GIF version |
Description: Utility theorem: index-independent form of df-base 17246. (Contributed by NM, 20-Oct-2012.) |
Ref | Expression |
---|---|
baseid | ⊢ Base = Slot (Base‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base 17246 | . 2 ⊢ Base = Slot 1 | |
2 | 1nn 12275 | . 2 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | ndxid 17231 | 1 ⊢ Base = Slot (Base‘ndx) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ‘cfv 6563 1c1 11154 Slot cslot 17215 ndxcnx 17227 Basecbs 17245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 df-slot 17216 df-ndx 17228 df-base 17246 |
This theorem is referenced by: basfn 17249 base0 17250 basndxelwund 17257 opelstrbas 17259 1strbas 17262 1strbasOLD 17263 2strbas 17268 2strbas1 17272 ressbas 17280 ressbasOLD 17281 ressval3d 17292 wunress 17296 wunressOLD 17297 rngbase 17345 srngbase 17356 lmodbase 17372 ipsbase 17383 phlbase 17393 topgrpbas 17408 otpsbas 17423 odrngbas 17450 prdsval 17502 prdsbas 17504 imasbas 17559 oppcbas 17764 oppcbasOLD 17765 rescbas 17877 rescbasOLD 17878 rescabs 17883 rescabsOLD 17884 wunfunc 17952 wunnat 18011 fucbas 18016 setcbas 18132 catcbas 18155 catcbaselcl 18168 catcfuccl 18173 estrcbas 18180 estrcbasbas 18186 estrreslem1 18192 catcxpccl 18263 odubas 18348 odubasOLD 18349 ipobas 18589 grpss 18985 oppgbas 19383 mgpbas 20158 opprbas 20358 ringcbasbas 20690 rmodislmod 20945 rmodislmodOLD 20946 srabase 21195 rlmscaf 21232 islidl 21243 lidlrsppropd 21272 rspsn 21361 cnfldbas 21386 cnfldbasOLD 21401 zlmbas 21547 znbas2 21573 thlbas 21732 thlbasOLD 21733 psrbas 21971 opsrbas 22087 ply1tmcl 22291 ply1scltm 22300 ply1sclf 22304 ply1scl0OLD 22310 ply1scl1OLD 22313 matbas 22433 tuslem 24291 tuslemOLD 24292 setsmsbas 24501 setsmsbasOLD 24502 tngbas 24671 nrgtrg 24727 trkgbas 28468 ttgbas 28902 setsvtx 29067 rlocbas 33254 rlocaddval 33255 rlocmulval 33256 resvbas 33339 idlsrgbas 33512 bj-endbase 37299 hlhilsbase 41923 opprmndb 42498 opprgrpb 42499 opprablb 42500 algbase 43163 mnringbased 44207 cznrnglem 48103 cznabel 48104 rngcbasALTV 48110 ringcbasALTV 48144 ringcbasbasALTV 48156 prstcbas 48868 mndtcbasval 48889 |
Copyright terms: Public domain | W3C validator |