Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-evalfn Structured version   Visualization version   GIF version

Theorem bj-evalfn 35172
Description: The evaluation at a class is a function on the universal class. (General form of slotfn 16813). (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by BJ, 27-Dec-2021.)
Assertion
Ref Expression
bj-evalfn Slot 𝐴 Fn V

Proof of Theorem bj-evalfn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fvex 6769 . 2 (𝑓𝐴) ∈ V
2 df-slot 16811 . 2 Slot 𝐴 = (𝑓 ∈ V ↦ (𝑓𝐴))
31, 2fnmpti 6560 1 Slot 𝐴 Fn V
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3422   Fn wfn 6413  cfv 6418  Slot cslot 16810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-slot 16811
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator