MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basendx Structured version   Visualization version   GIF version

Theorem basendx 16545
Description: Index value of the base set extractor. (Normally it is preferred to work with (Base‘ndx) rather than the hard-coded 1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Aug-2013.)
Assertion
Ref Expression
basendx (Base‘ndx) = 1

Proof of Theorem basendx
StepHypRef Expression
1 df-base 16487 . 2 Base = Slot 1
2 1nn 11643 . 2 1 ∈ ℕ
31, 2ndxarg 16506 1 (Base‘ndx) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  cfv 6344  1c1 10532  ndxcnx 16478  Basecbs 16481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-1cn 10589  ax-addcl 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-ov 7149  df-om 7572  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-nn 11633  df-ndx 16484  df-slot 16485  df-base 16487
This theorem is referenced by:  resslem  16555  1strstr  16596  2strstr  16600  2strstr1  16603  grpbasex  16611  grpplusgx  16612  rngstr  16617  lmodstr  16634  topgrpstr  16659  otpsstr  16666  oppcbas  16986  rescbas  17097  rescabs  17101  catstr  17225  odubas  17741  ipostr  17761  mgpress  19248  cnfldfun  20552  thlbas  20835  indistpsx  21613  tuslem  22871  setsmsbas  23080  trkgstr  26236  eengstr  26772
  Copyright terms: Public domain W3C validator