![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > basendx | Structured version Visualization version GIF version |
Description: Index value of the base set extractor. (Contributed by Mario Carneiro, 2-Aug-2013.) Use of this theorem is discouraged since the particular value 1 for the index is an implementation detail, see section header comment mmtheorems.html#cnx for more information. (New usage is discouraged.) |
Ref | Expression |
---|---|
basendx | ⊢ (Base‘ndx) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base 17149 | . 2 ⊢ Base = Slot 1 | |
2 | 1nn 12227 | . 2 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | ndxarg 17133 | 1 ⊢ (Base‘ndx) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ‘cfv 6542 1c1 11113 ndxcnx 17130 Basecbs 17148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-1cn 11170 ax-addcl 11172 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-nn 12217 df-slot 17119 df-ndx 17131 df-base 17149 |
This theorem is referenced by: basendxnn 17158 1strstr 17163 2strstr 17170 2strstr1OLD 17174 resslemOLD 17191 basendxltplusgndx 17230 grpbasex 17240 grpplusgx 17241 basendxnmulrndx 17244 rngstr 17247 starvndxnbasendx 17253 scandxnbasendx 17265 vscandxnbasendx 17270 lmodstr 17274 ipndxnbasendx 17281 basendxlttsetndx 17304 topgrpstr 17310 basendxltplendx 17318 otpsstr 17325 basendxnocndx 17332 basendxltdsndx 17337 basendxltunifndx 17347 slotsbhcdif 17364 oppcbasOLD 17668 rescbasOLD 17781 rescabsOLD 17787 catstr 17913 odubasOLD 18249 ipostr 18486 mgpressOLD 20044 cnfldfunALTOLD 21158 thlbasOLD 21469 indistpsx 22733 tuslemOLD 23992 setsmsbasOLD 24202 slotsinbpsd 27959 slotslnbpsd 27960 trkgstr 27962 eengstr 28505 basendxltedgfndx 28520 |
Copyright terms: Public domain | W3C validator |