![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > basendx | Structured version Visualization version GIF version |
Description: Index value of the base set extractor. (Normally it is preferred to work with (Base‘ndx) rather than the hard-coded 1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Aug-2013.) |
Ref | Expression |
---|---|
basendx | ⊢ (Base‘ndx) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base 16228 | . 2 ⊢ Base = Slot 1 | |
2 | 1nn 11363 | . 2 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | ndxarg 16247 | 1 ⊢ (Base‘ndx) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ‘cfv 6123 1c1 10253 ndxcnx 16219 Basecbs 16222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-1cn 10310 ax-addcl 10312 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-om 7327 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-nn 11351 df-ndx 16225 df-slot 16226 df-base 16228 |
This theorem is referenced by: resslem 16296 1strstr 16338 2strstr 16342 2strstr1 16345 grpbasex 16353 grpplusgx 16354 rngstr 16359 lmodstr 16376 topgrpstr 16401 otpsstr 16408 oppcbas 16730 rescbas 16841 rescabs 16845 catstr 16969 odubas 17486 ipostr 17506 mgpress 18854 cnfldfun 20118 thlbas 20403 matbas 20586 indistpsx 21185 tuslem 22441 setsmsbas 22650 trkgstr 25756 eengstr 26279 |
Copyright terms: Public domain | W3C validator |