![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > basendx | Structured version Visualization version GIF version |
Description: Index value of the base set extractor. (Contributed by Mario Carneiro, 2-Aug-2013.) Use of this theorem is discouraged since the particular value 1 for the index is an implementation detail, see section header comment mmtheorems.html#cnx for more information. (New usage is discouraged.) |
Ref | Expression |
---|---|
basendx | ⊢ (Base‘ndx) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base 17144 | . 2 ⊢ Base = Slot 1 | |
2 | 1nn 12222 | . 2 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | ndxarg 17128 | 1 ⊢ (Base‘ndx) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ‘cfv 6543 1c1 11110 ndxcnx 17125 Basecbs 17143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-1cn 11167 ax-addcl 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-nn 12212 df-slot 17114 df-ndx 17126 df-base 17144 |
This theorem is referenced by: basendxnn 17153 1strstr 17158 2strstr 17165 2strstr1OLD 17169 resslemOLD 17186 basendxltplusgndx 17225 grpbasex 17235 grpplusgx 17236 basendxnmulrndx 17239 rngstr 17242 starvndxnbasendx 17248 scandxnbasendx 17260 vscandxnbasendx 17265 lmodstr 17269 ipndxnbasendx 17276 basendxlttsetndx 17299 topgrpstr 17305 basendxltplendx 17313 otpsstr 17320 basendxnocndx 17327 basendxltdsndx 17332 basendxltunifndx 17342 slotsbhcdif 17359 oppcbasOLD 17663 rescbasOLD 17776 rescabsOLD 17782 catstr 17908 odubasOLD 18244 ipostr 18481 mgpressOLD 20002 cnfldfunALTOLD 20957 thlbasOLD 21249 indistpsx 22512 tuslemOLD 23771 setsmsbasOLD 23981 slotsinbpsd 27689 slotslnbpsd 27690 trkgstr 27692 eengstr 28235 basendxltedgfndx 28250 |
Copyright terms: Public domain | W3C validator |