![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sloteq | Structured version Visualization version GIF version |
Description: Equality theorem for the Slot construction. The converse holds if 𝐴 (or 𝐵) is a set. (Contributed by BJ, 27-Dec-2021.) |
Ref | Expression |
---|---|
sloteq | ⊢ (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑓‘𝐴) = (𝑓‘𝐵)) | |
2 | 1 | mpteq2dv 5268 | . 2 ⊢ (𝐴 = 𝐵 → (𝑓 ∈ V ↦ (𝑓‘𝐴)) = (𝑓 ∈ V ↦ (𝑓‘𝐵))) |
3 | df-slot 17229 | . 2 ⊢ Slot 𝐴 = (𝑓 ∈ V ↦ (𝑓‘𝐴)) | |
4 | df-slot 17229 | . 2 ⊢ Slot 𝐵 = (𝑓 ∈ V ↦ (𝑓‘𝐵)) | |
5 | 2, 3, 4 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Vcvv 3488 ↦ cmpt 5249 ‘cfv 6573 Slot cslot 17228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-iota 6525 df-fv 6581 df-slot 17229 |
This theorem is referenced by: ndxid 17244 |
Copyright terms: Public domain | W3C validator |