MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sloteq Structured version   Visualization version   GIF version

Theorem sloteq 17202
Description: Equality theorem for the Slot construction. The converse holds if 𝐴 (or 𝐵) is a set. (Contributed by BJ, 27-Dec-2021.)
Assertion
Ref Expression
sloteq (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵)

Proof of Theorem sloteq
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6876 . . 3 (𝐴 = 𝐵 → (𝑓𝐴) = (𝑓𝐵))
21mpteq2dv 5215 . 2 (𝐴 = 𝐵 → (𝑓 ∈ V ↦ (𝑓𝐴)) = (𝑓 ∈ V ↦ (𝑓𝐵)))
3 df-slot 17201 . 2 Slot 𝐴 = (𝑓 ∈ V ↦ (𝑓𝐴))
4 df-slot 17201 . 2 Slot 𝐵 = (𝑓 ∈ V ↦ (𝑓𝐵))
52, 3, 43eqtr4g 2795 1 (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3459  cmpt 5201  cfv 6531  Slot cslot 17200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-iota 6484  df-fv 6539  df-slot 17201
This theorem is referenced by:  ndxid  17216
  Copyright terms: Public domain W3C validator