| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sloteq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the Slot construction. The converse holds if 𝐴 (or 𝐵) is a set. (Contributed by BJ, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| sloteq | ⊢ (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑓‘𝐴) = (𝑓‘𝐵)) | |
| 2 | 1 | mpteq2dv 5204 | . 2 ⊢ (𝐴 = 𝐵 → (𝑓 ∈ V ↦ (𝑓‘𝐴)) = (𝑓 ∈ V ↦ (𝑓‘𝐵))) |
| 3 | df-slot 17159 | . 2 ⊢ Slot 𝐴 = (𝑓 ∈ V ↦ (𝑓‘𝐴)) | |
| 4 | df-slot 17159 | . 2 ⊢ Slot 𝐵 = (𝑓 ∈ V ↦ (𝑓‘𝐵)) | |
| 5 | 2, 3, 4 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3450 ↦ cmpt 5191 ‘cfv 6514 Slot cslot 17158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-iota 6467 df-fv 6522 df-slot 17159 |
| This theorem is referenced by: ndxid 17174 |
| Copyright terms: Public domain | W3C validator |