| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sloteq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the Slot construction. The converse holds if 𝐴 (or 𝐵) is a set. (Contributed by BJ, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| sloteq | ⊢ (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6828 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑓‘𝐴) = (𝑓‘𝐵)) | |
| 2 | 1 | mpteq2dv 5187 | . 2 ⊢ (𝐴 = 𝐵 → (𝑓 ∈ V ↦ (𝑓‘𝐴)) = (𝑓 ∈ V ↦ (𝑓‘𝐵))) |
| 3 | df-slot 17095 | . 2 ⊢ Slot 𝐴 = (𝑓 ∈ V ↦ (𝑓‘𝐴)) | |
| 4 | df-slot 17095 | . 2 ⊢ Slot 𝐵 = (𝑓 ∈ V ↦ (𝑓‘𝐵)) | |
| 5 | 2, 3, 4 | 3eqtr4g 2793 | 1 ⊢ (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Vcvv 3437 ↦ cmpt 5174 ‘cfv 6486 Slot cslot 17094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-iota 6442 df-fv 6494 df-slot 17095 |
| This theorem is referenced by: ndxid 17110 |
| Copyright terms: Public domain | W3C validator |