![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sloteq | Structured version Visualization version GIF version |
Description: Equality theorem for the Slot construction. The converse holds if 𝐴 (or 𝐵) is a set. (Contributed by BJ, 27-Dec-2021.) |
Ref | Expression |
---|---|
sloteq | ⊢ (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑓‘𝐴) = (𝑓‘𝐵)) | |
2 | 1 | mpteq2dv 5250 | . 2 ⊢ (𝐴 = 𝐵 → (𝑓 ∈ V ↦ (𝑓‘𝐴)) = (𝑓 ∈ V ↦ (𝑓‘𝐵))) |
3 | df-slot 17114 | . 2 ⊢ Slot 𝐴 = (𝑓 ∈ V ↦ (𝑓‘𝐴)) | |
4 | df-slot 17114 | . 2 ⊢ Slot 𝐵 = (𝑓 ∈ V ↦ (𝑓‘𝐵)) | |
5 | 2, 3, 4 | 3eqtr4g 2797 | 1 ⊢ (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 Vcvv 3474 ↦ cmpt 5231 ‘cfv 6543 Slot cslot 17113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-iota 6495 df-fv 6551 df-slot 17114 |
This theorem is referenced by: ndxid 17129 |
Copyright terms: Public domain | W3C validator |