Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvex | Structured version Visualization version GIF version |
Description: The value of a class exists. Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by NM, 30-Dec-1996.) |
Ref | Expression |
---|---|
fvex | ⊢ (𝐹‘𝐴) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 6426 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
2 | iotaex 6398 | . 2 ⊢ (℩𝑥𝐴𝐹𝑥) ∈ V | |
3 | 1, 2 | eqeltri 2835 | 1 ⊢ (𝐹‘𝐴) ∈ V |
Copyright terms: Public domain | W3C validator |