| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvex | Structured version Visualization version GIF version | ||
| Description: The value of a class exists. Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by NM, 30-Dec-1996.) |
| Ref | Expression |
|---|---|
| fvex | ⊢ (𝐹‘𝐴) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 6550 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 2 | iotaex 6515 | . 2 ⊢ (℩𝑥𝐴𝐹𝑥) ∈ V | |
| 3 | 1, 2 | eqeltri 2829 | 1 ⊢ (𝐹‘𝐴) ∈ V |
| Copyright terms: Public domain | W3C validator |