Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  baseval Structured version   Visualization version   GIF version

Theorem baseval 16600
 Description: Value of the base set extractor. (Normally it is preferred to work with (Base‘ndx) rather than the hard-coded 1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.)
Hypothesis
Ref Expression
baseval.k 𝐾 ∈ V
Assertion
Ref Expression
baseval (Base‘𝐾) = (𝐾‘1)

Proof of Theorem baseval
StepHypRef Expression
1 baseval.k . 2 𝐾 ∈ V
2 df-base 16547 . 2 Base = Slot 1
31, 2strfvn 16563 1 (Base‘𝐾) = (𝐾‘1)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538   ∈ wcel 2111  Vcvv 3409  ‘cfv 6335  1c1 10576  Basecbs 16541 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-iota 6294  df-fun 6337  df-fv 6343  df-slot 16545  df-base 16547 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator