![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > baseval | Structured version Visualization version GIF version |
Description: Value of the base set extractor. (Normally it is preferred to work with (Base‘ndx) rather than the hard-coded 1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.) |
Ref | Expression |
---|---|
baseval.k | ⊢ 𝐾 ∈ V |
Ref | Expression |
---|---|
baseval | ⊢ (Base‘𝐾) = (𝐾‘1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseval.k | . 2 ⊢ 𝐾 ∈ V | |
2 | df-base 17091 | . 2 ⊢ Base = Slot 1 | |
3 | 1, 2 | strfvn 17065 | 1 ⊢ (Base‘𝐾) = (𝐾‘1) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 Vcvv 3448 ‘cfv 6501 1c1 11059 Basecbs 17090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6453 df-fun 6503 df-fv 6509 df-slot 17061 df-base 17091 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |