Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-evaleq Structured version   Visualization version   GIF version

Theorem bj-evaleq 37057
Description: Equality theorem for the Slot construction. This is currently a duplicate of sloteq 17159 but may diverge from it if/when a token Eval is introduced for evaluation in order to separate it from Slot and any of its possible modifications. (Contributed by BJ, 27-Dec-2021.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-evaleq (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵)

Proof of Theorem bj-evaleq
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6865 . . 3 (𝐴 = 𝐵 → (𝑓𝐴) = (𝑓𝐵))
21mpteq2dv 5209 . 2 (𝐴 = 𝐵 → (𝑓 ∈ V ↦ (𝑓𝐴)) = (𝑓 ∈ V ↦ (𝑓𝐵)))
3 df-slot 17158 . 2 Slot 𝐴 = (𝑓 ∈ V ↦ (𝑓𝐴))
4 df-slot 17158 . 2 Slot 𝐵 = (𝑓 ∈ V ↦ (𝑓𝐵))
52, 3, 43eqtr4g 2790 1 (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3455  cmpt 5196  cfv 6519  Slot cslot 17157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-iota 6472  df-fv 6527  df-slot 17158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator