Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-evalval Structured version   Visualization version   GIF version

Theorem bj-evalval 35944
Description: Value of the evaluation at a class. (Closed form of strfvnd 17114 and strfvn 17115). (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 15-Nov-2014.) (Revised by BJ, 27-Dec-2021.)
Assertion
Ref Expression
bj-evalval (𝐹𝑉 → (Slot 𝐴𝐹) = (𝐹𝐴))

Proof of Theorem bj-evalval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐹𝑉𝐹 ∈ V)
2 fveq1 6887 . . 3 (𝑓 = 𝐹 → (𝑓𝐴) = (𝐹𝐴))
3 df-slot 17111 . . 3 Slot 𝐴 = (𝑓 ∈ V ↦ (𝑓𝐴))
4 fvex 6901 . . 3 (𝐹𝐴) ∈ V
52, 3, 4fvmpt 6995 . 2 (𝐹 ∈ V → (Slot 𝐴𝐹) = (𝐹𝐴))
61, 5syl 17 1 (𝐹𝑉 → (Slot 𝐴𝐹) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  cfv 6540  Slot cslot 17110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-slot 17111
This theorem is referenced by:  bj-evalid  35945  bj-evalidval  35947
  Copyright terms: Public domain W3C validator