| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-evalval | Structured version Visualization version GIF version | ||
| Description: Value of the evaluation at a class. (Closed form of strfvnd 17162 and strfvn 17163). (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 15-Nov-2014.) (Revised by BJ, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| bj-evalval | ⊢ (𝐹 ∈ 𝑉 → (Slot 𝐴‘𝐹) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 2 | fveq1 6860 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑓‘𝐴) = (𝐹‘𝐴)) | |
| 3 | df-slot 17159 | . . 3 ⊢ Slot 𝐴 = (𝑓 ∈ V ↦ (𝑓‘𝐴)) | |
| 4 | fvex 6874 | . . 3 ⊢ (𝐹‘𝐴) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6971 | . 2 ⊢ (𝐹 ∈ V → (Slot 𝐴‘𝐹) = (𝐹‘𝐴)) |
| 6 | 1, 5 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑉 → (Slot 𝐴‘𝐹) = (𝐹‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ‘cfv 6514 Slot cslot 17158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-slot 17159 |
| This theorem is referenced by: bj-evalid 37071 bj-evalidval 37073 |
| Copyright terms: Public domain | W3C validator |