| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-evalval | Structured version Visualization version GIF version | ||
| Description: Value of the evaluation at a class. (Closed form of strfvnd 17114 and strfvn 17115). (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 15-Nov-2014.) (Revised by BJ, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| bj-evalval | ⊢ (𝐹 ∈ 𝑉 → (Slot 𝐴‘𝐹) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3459 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 2 | fveq1 6825 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑓‘𝐴) = (𝐹‘𝐴)) | |
| 3 | df-slot 17111 | . . 3 ⊢ Slot 𝐴 = (𝑓 ∈ V ↦ (𝑓‘𝐴)) | |
| 4 | fvex 6839 | . . 3 ⊢ (𝐹‘𝐴) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6934 | . 2 ⊢ (𝐹 ∈ V → (Slot 𝐴‘𝐹) = (𝐹‘𝐴)) |
| 6 | 1, 5 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑉 → (Slot 𝐴‘𝐹) = (𝐹‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ‘cfv 6486 Slot cslot 17110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-slot 17111 |
| This theorem is referenced by: bj-evalid 37049 bj-evalidval 37051 |
| Copyright terms: Public domain | W3C validator |