|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-evalval | Structured version Visualization version GIF version | ||
| Description: Value of the evaluation at a class. (Closed form of strfvnd 17223 and strfvn 17224). (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 15-Nov-2014.) (Revised by BJ, 27-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| bj-evalval | ⊢ (𝐹 ∈ 𝑉 → (Slot 𝐴‘𝐹) = (𝐹‘𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 3500 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 2 | fveq1 6904 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑓‘𝐴) = (𝐹‘𝐴)) | |
| 3 | df-slot 17220 | . . 3 ⊢ Slot 𝐴 = (𝑓 ∈ V ↦ (𝑓‘𝐴)) | |
| 4 | fvex 6918 | . . 3 ⊢ (𝐹‘𝐴) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 7015 | . 2 ⊢ (𝐹 ∈ V → (Slot 𝐴‘𝐹) = (𝐹‘𝐴)) | 
| 6 | 1, 5 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑉 → (Slot 𝐴‘𝐹) = (𝐹‘𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ‘cfv 6560 Slot cslot 17219 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-slot 17220 | 
| This theorem is referenced by: bj-evalid 37078 bj-evalidval 37080 | 
| Copyright terms: Public domain | W3C validator |