MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfunOLD Structured version   Visualization version   GIF version

Theorem nfunOLD 4134
Description: Obsolete version of nfun 4133 as of 14-May-2025. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfun.1 𝑥𝐴
nfun.2 𝑥𝐵
Assertion
Ref Expression
nfunOLD 𝑥(𝐴𝐵)

Proof of Theorem nfunOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-un 3919 . 2 (𝐴𝐵) = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
2 nfun.1 . . . . 5 𝑥𝐴
32nfcri 2883 . . . 4 𝑥 𝑦𝐴
4 nfun.2 . . . . 5 𝑥𝐵
54nfcri 2883 . . . 4 𝑥 𝑦𝐵
63, 5nfor 1904 . . 3 𝑥(𝑦𝐴𝑦𝐵)
76nfab 2897 . 2 𝑥{𝑦 ∣ (𝑦𝐴𝑦𝐵)}
81, 7nfcxfr 2889 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 847  wcel 2109  {cab 2707  wnfc 2876  cun 3912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-un 3919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator