MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-un Structured version   Visualization version   GIF version

Theorem ex-un 29666
Description: Example for df-un 3952. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-un ({1, 3} ∪ {1, 8}) = {1, 3, 8}

Proof of Theorem ex-un
StepHypRef Expression
1 unass 4165 . . 3 (({1, 3} ∪ {1}) ∪ {8}) = ({1, 3} ∪ ({1} ∪ {8}))
2 snsspr1 4816 . . . . 5 {1} ⊆ {1, 3}
3 ssequn2 4182 . . . . 5 ({1} ⊆ {1, 3} ↔ ({1, 3} ∪ {1}) = {1, 3})
42, 3mpbi 229 . . . 4 ({1, 3} ∪ {1}) = {1, 3}
54uneq1i 4158 . . 3 (({1, 3} ∪ {1}) ∪ {8}) = ({1, 3} ∪ {8})
61, 5eqtr3i 2762 . 2 ({1, 3} ∪ ({1} ∪ {8})) = ({1, 3} ∪ {8})
7 df-pr 4630 . . 3 {1, 8} = ({1} ∪ {8})
87uneq2i 4159 . 2 ({1, 3} ∪ {1, 8}) = ({1, 3} ∪ ({1} ∪ {8}))
9 df-tp 4632 . 2 {1, 3, 8} = ({1, 3} ∪ {8})
106, 8, 93eqtr4i 2770 1 ({1, 3} ∪ {1, 8}) = {1, 3, 8}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3945  wss 3947  {csn 4627  {cpr 4629  {ctp 4631  1c1 11107  3c3 12264  8c8 12269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-un 3952  df-in 3954  df-ss 3964  df-pr 4630  df-tp 4632
This theorem is referenced by:  ex-uni  29668
  Copyright terms: Public domain W3C validator