MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-un Structured version   Visualization version   GIF version

Theorem ex-un 30453
Description: Example for df-un 3968. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-un ({1, 3} ∪ {1, 8}) = {1, 3, 8}

Proof of Theorem ex-un
StepHypRef Expression
1 unass 4182 . . 3 (({1, 3} ∪ {1}) ∪ {8}) = ({1, 3} ∪ ({1} ∪ {8}))
2 snsspr1 4819 . . . . 5 {1} ⊆ {1, 3}
3 ssequn2 4199 . . . . 5 ({1} ⊆ {1, 3} ↔ ({1, 3} ∪ {1}) = {1, 3})
42, 3mpbi 230 . . . 4 ({1, 3} ∪ {1}) = {1, 3}
54uneq1i 4174 . . 3 (({1, 3} ∪ {1}) ∪ {8}) = ({1, 3} ∪ {8})
61, 5eqtr3i 2765 . 2 ({1, 3} ∪ ({1} ∪ {8})) = ({1, 3} ∪ {8})
7 df-pr 4634 . . 3 {1, 8} = ({1} ∪ {8})
87uneq2i 4175 . 2 ({1, 3} ∪ {1, 8}) = ({1, 3} ∪ ({1} ∪ {8}))
9 df-tp 4636 . 2 {1, 3, 8} = ({1, 3} ∪ {8})
106, 8, 93eqtr4i 2773 1 ({1, 3} ∪ {1, 8}) = {1, 3, 8}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3961  wss 3963  {csn 4631  {cpr 4633  {ctp 4635  1c1 11154  3c3 12320  8c8 12325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-ss 3980  df-pr 4634  df-tp 4636
This theorem is referenced by:  ex-uni  30455
  Copyright terms: Public domain W3C validator