![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-un | Structured version Visualization version GIF version |
Description: Example for df-un 3981. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-un | ⊢ ({1, 3} ∪ {1, 8}) = {1, 3, 8} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unass 4195 | . . 3 ⊢ (({1, 3} ∪ {1}) ∪ {8}) = ({1, 3} ∪ ({1} ∪ {8})) | |
2 | snsspr1 4839 | . . . . 5 ⊢ {1} ⊆ {1, 3} | |
3 | ssequn2 4212 | . . . . 5 ⊢ ({1} ⊆ {1, 3} ↔ ({1, 3} ∪ {1}) = {1, 3}) | |
4 | 2, 3 | mpbi 230 | . . . 4 ⊢ ({1, 3} ∪ {1}) = {1, 3} |
5 | 4 | uneq1i 4187 | . . 3 ⊢ (({1, 3} ∪ {1}) ∪ {8}) = ({1, 3} ∪ {8}) |
6 | 1, 5 | eqtr3i 2770 | . 2 ⊢ ({1, 3} ∪ ({1} ∪ {8})) = ({1, 3} ∪ {8}) |
7 | df-pr 4651 | . . 3 ⊢ {1, 8} = ({1} ∪ {8}) | |
8 | 7 | uneq2i 4188 | . 2 ⊢ ({1, 3} ∪ {1, 8}) = ({1, 3} ∪ ({1} ∪ {8})) |
9 | df-tp 4653 | . 2 ⊢ {1, 3, 8} = ({1, 3} ∪ {8}) | |
10 | 6, 8, 9 | 3eqtr4i 2778 | 1 ⊢ ({1, 3} ∪ {1, 8}) = {1, 3, 8} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3974 ⊆ wss 3976 {csn 4648 {cpr 4650 {ctp 4652 1c1 11185 3c3 12349 8c8 12354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-pr 4651 df-tp 4653 |
This theorem is referenced by: ex-uni 30458 |
Copyright terms: Public domain | W3C validator |