MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-un Structured version   Visualization version   GIF version

Theorem ex-un 28689
Description: Example for df-un 3888. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-un ({1, 3} ∪ {1, 8}) = {1, 3, 8}

Proof of Theorem ex-un
StepHypRef Expression
1 unass 4096 . . 3 (({1, 3} ∪ {1}) ∪ {8}) = ({1, 3} ∪ ({1} ∪ {8}))
2 snsspr1 4744 . . . . 5 {1} ⊆ {1, 3}
3 ssequn2 4113 . . . . 5 ({1} ⊆ {1, 3} ↔ ({1, 3} ∪ {1}) = {1, 3})
42, 3mpbi 229 . . . 4 ({1, 3} ∪ {1}) = {1, 3}
54uneq1i 4089 . . 3 (({1, 3} ∪ {1}) ∪ {8}) = ({1, 3} ∪ {8})
61, 5eqtr3i 2768 . 2 ({1, 3} ∪ ({1} ∪ {8})) = ({1, 3} ∪ {8})
7 df-pr 4561 . . 3 {1, 8} = ({1} ∪ {8})
87uneq2i 4090 . 2 ({1, 3} ∪ {1, 8}) = ({1, 3} ∪ ({1} ∪ {8}))
9 df-tp 4563 . 2 {1, 3, 8} = ({1, 3} ∪ {8})
106, 8, 93eqtr4i 2776 1 ({1, 3} ∪ {1, 8}) = {1, 3, 8}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3881  wss 3883  {csn 4558  {cpr 4560  {ctp 4562  1c1 10803  3c3 11959  8c8 11964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-in 3890  df-ss 3900  df-pr 4561  df-tp 4563
This theorem is referenced by:  ex-uni  28691
  Copyright terms: Public domain W3C validator