MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-un Structured version   Visualization version   GIF version

Theorem ex-un 30386
Description: Example for df-un 3910. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-un ({1, 3} ∪ {1, 8}) = {1, 3, 8}

Proof of Theorem ex-un
StepHypRef Expression
1 unass 4125 . . 3 (({1, 3} ∪ {1}) ∪ {8}) = ({1, 3} ∪ ({1} ∪ {8}))
2 snsspr1 4768 . . . . 5 {1} ⊆ {1, 3}
3 ssequn2 4142 . . . . 5 ({1} ⊆ {1, 3} ↔ ({1, 3} ∪ {1}) = {1, 3})
42, 3mpbi 230 . . . 4 ({1, 3} ∪ {1}) = {1, 3}
54uneq1i 4117 . . 3 (({1, 3} ∪ {1}) ∪ {8}) = ({1, 3} ∪ {8})
61, 5eqtr3i 2754 . 2 ({1, 3} ∪ ({1} ∪ {8})) = ({1, 3} ∪ {8})
7 df-pr 4582 . . 3 {1, 8} = ({1} ∪ {8})
87uneq2i 4118 . 2 ({1, 3} ∪ {1, 8}) = ({1, 3} ∪ ({1} ∪ {8}))
9 df-tp 4584 . 2 {1, 3, 8} = ({1, 3} ∪ {8})
106, 8, 93eqtr4i 2762 1 ({1, 3} ∪ {1, 8}) = {1, 3, 8}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3903  wss 3905  {csn 4579  {cpr 4581  {ctp 4583  1c1 11029  3c3 12202  8c8 12207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-un 3910  df-ss 3922  df-pr 4582  df-tp 4584
This theorem is referenced by:  ex-uni  30388
  Copyright terms: Public domain W3C validator