| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-un | Structured version Visualization version GIF version | ||
| Description: Example for df-un 3936. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| ex-un | ⊢ ({1, 3} ∪ {1, 8}) = {1, 3, 8} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unass 4152 | . . 3 ⊢ (({1, 3} ∪ {1}) ∪ {8}) = ({1, 3} ∪ ({1} ∪ {8})) | |
| 2 | snsspr1 4795 | . . . . 5 ⊢ {1} ⊆ {1, 3} | |
| 3 | ssequn2 4169 | . . . . 5 ⊢ ({1} ⊆ {1, 3} ↔ ({1, 3} ∪ {1}) = {1, 3}) | |
| 4 | 2, 3 | mpbi 230 | . . . 4 ⊢ ({1, 3} ∪ {1}) = {1, 3} |
| 5 | 4 | uneq1i 4144 | . . 3 ⊢ (({1, 3} ∪ {1}) ∪ {8}) = ({1, 3} ∪ {8}) |
| 6 | 1, 5 | eqtr3i 2761 | . 2 ⊢ ({1, 3} ∪ ({1} ∪ {8})) = ({1, 3} ∪ {8}) |
| 7 | df-pr 4609 | . . 3 ⊢ {1, 8} = ({1} ∪ {8}) | |
| 8 | 7 | uneq2i 4145 | . 2 ⊢ ({1, 3} ∪ {1, 8}) = ({1, 3} ∪ ({1} ∪ {8})) |
| 9 | df-tp 4611 | . 2 ⊢ {1, 3, 8} = ({1, 3} ∪ {8}) | |
| 10 | 6, 8, 9 | 3eqtr4i 2769 | 1 ⊢ ({1, 3} ∪ {1, 8}) = {1, 3, 8} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3929 ⊆ wss 3931 {csn 4606 {cpr 4608 {ctp 4610 1c1 11135 3c3 12301 8c8 12306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-ss 3948 df-pr 4609 df-tp 4611 |
| This theorem is referenced by: ex-uni 30412 |
| Copyright terms: Public domain | W3C validator |