![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-un | Structured version Visualization version GIF version |
Description: Example for df-un 3952. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-un | ⊢ ({1, 3} ∪ {1, 8}) = {1, 3, 8} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unass 4165 | . . 3 ⊢ (({1, 3} ∪ {1}) ∪ {8}) = ({1, 3} ∪ ({1} ∪ {8})) | |
2 | snsspr1 4816 | . . . . 5 ⊢ {1} ⊆ {1, 3} | |
3 | ssequn2 4182 | . . . . 5 ⊢ ({1} ⊆ {1, 3} ↔ ({1, 3} ∪ {1}) = {1, 3}) | |
4 | 2, 3 | mpbi 229 | . . . 4 ⊢ ({1, 3} ∪ {1}) = {1, 3} |
5 | 4 | uneq1i 4158 | . . 3 ⊢ (({1, 3} ∪ {1}) ∪ {8}) = ({1, 3} ∪ {8}) |
6 | 1, 5 | eqtr3i 2762 | . 2 ⊢ ({1, 3} ∪ ({1} ∪ {8})) = ({1, 3} ∪ {8}) |
7 | df-pr 4630 | . . 3 ⊢ {1, 8} = ({1} ∪ {8}) | |
8 | 7 | uneq2i 4159 | . 2 ⊢ ({1, 3} ∪ {1, 8}) = ({1, 3} ∪ ({1} ∪ {8})) |
9 | df-tp 4632 | . 2 ⊢ {1, 3, 8} = ({1, 3} ∪ {8}) | |
10 | 6, 8, 9 | 3eqtr4i 2770 | 1 ⊢ ({1, 3} ∪ {1, 8}) = {1, 3, 8} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∪ cun 3945 ⊆ wss 3947 {csn 4627 {cpr 4629 {ctp 4631 1c1 11107 3c3 12264 8c8 12269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-un 3952 df-in 3954 df-ss 3964 df-pr 4630 df-tp 4632 |
This theorem is referenced by: ex-uni 29668 |
Copyright terms: Public domain | W3C validator |