![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-un | Structured version Visualization version GIF version |
Description: Example for df-un 3968. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-un | ⊢ ({1, 3} ∪ {1, 8}) = {1, 3, 8} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unass 4182 | . . 3 ⊢ (({1, 3} ∪ {1}) ∪ {8}) = ({1, 3} ∪ ({1} ∪ {8})) | |
2 | snsspr1 4819 | . . . . 5 ⊢ {1} ⊆ {1, 3} | |
3 | ssequn2 4199 | . . . . 5 ⊢ ({1} ⊆ {1, 3} ↔ ({1, 3} ∪ {1}) = {1, 3}) | |
4 | 2, 3 | mpbi 230 | . . . 4 ⊢ ({1, 3} ∪ {1}) = {1, 3} |
5 | 4 | uneq1i 4174 | . . 3 ⊢ (({1, 3} ∪ {1}) ∪ {8}) = ({1, 3} ∪ {8}) |
6 | 1, 5 | eqtr3i 2765 | . 2 ⊢ ({1, 3} ∪ ({1} ∪ {8})) = ({1, 3} ∪ {8}) |
7 | df-pr 4634 | . . 3 ⊢ {1, 8} = ({1} ∪ {8}) | |
8 | 7 | uneq2i 4175 | . 2 ⊢ ({1, 3} ∪ {1, 8}) = ({1, 3} ∪ ({1} ∪ {8})) |
9 | df-tp 4636 | . 2 ⊢ {1, 3, 8} = ({1, 3} ∪ {8}) | |
10 | 6, 8, 9 | 3eqtr4i 2773 | 1 ⊢ ({1, 3} ∪ {1, 8}) = {1, 3, 8} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3961 ⊆ wss 3963 {csn 4631 {cpr 4633 {ctp 4635 1c1 11154 3c3 12320 8c8 12325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-pr 4634 df-tp 4636 |
This theorem is referenced by: ex-uni 30455 |
Copyright terms: Public domain | W3C validator |