MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinuni Structured version   Visualization version   GIF version

Theorem iinuni 5121
Description: A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iinuni (𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iinuni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.32v 3198 . . . 4 (∀𝑥𝐵 (𝑦𝐴𝑦𝑥) ↔ (𝑦𝐴 ∨ ∀𝑥𝐵 𝑦𝑥))
2 elun 4176 . . . . 5 (𝑦 ∈ (𝐴𝑥) ↔ (𝑦𝐴𝑦𝑥))
32ralbii 3099 . . . 4 (∀𝑥𝐵 𝑦 ∈ (𝐴𝑥) ↔ ∀𝑥𝐵 (𝑦𝐴𝑦𝑥))
4 vex 3492 . . . . . 6 𝑦 ∈ V
54elint2 4977 . . . . 5 (𝑦 𝐵 ↔ ∀𝑥𝐵 𝑦𝑥)
65orbi2i 911 . . . 4 ((𝑦𝐴𝑦 𝐵) ↔ (𝑦𝐴 ∨ ∀𝑥𝐵 𝑦𝑥))
71, 3, 63bitr4ri 304 . . 3 ((𝑦𝐴𝑦 𝐵) ↔ ∀𝑥𝐵 𝑦 ∈ (𝐴𝑥))
87abbii 2812 . 2 {𝑦 ∣ (𝑦𝐴𝑦 𝐵)} = {𝑦 ∣ ∀𝑥𝐵 𝑦 ∈ (𝐴𝑥)}
9 df-un 3981 . 2 (𝐴 𝐵) = {𝑦 ∣ (𝑦𝐴𝑦 𝐵)}
10 df-iin 5018 . 2 𝑥𝐵 (𝐴𝑥) = {𝑦 ∣ ∀𝑥𝐵 𝑦 ∈ (𝐴𝑥)}
118, 9, 103eqtr4i 2778 1 (𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wo 846   = wceq 1537  wcel 2108  {cab 2717  wral 3067  cun 3974   cint 4970   ciin 5016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-un 3981  df-int 4971  df-iin 5018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator