| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iinuni | Structured version Visualization version GIF version | ||
| Description: A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
| Ref | Expression |
|---|---|
| iinuni | ⊢ (𝐴 ∪ ∩ 𝐵) = ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.32v 3179 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝐴 ∨ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥)) | |
| 2 | elun 4133 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 ∪ 𝑥) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥)) | |
| 3 | 2 | ralbii 3081 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥)) |
| 4 | vex 3467 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 5 | 4 | elint2 4933 | . . . . 5 ⊢ (𝑦 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
| 6 | 5 | orbi2i 912 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥)) |
| 7 | 1, 3, 6 | 3bitr4ri 304 | . . 3 ⊢ ((𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵) ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥)) |
| 8 | 7 | abbii 2801 | . 2 ⊢ {𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵)} = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥)} |
| 9 | df-un 3936 | . 2 ⊢ (𝐴 ∪ ∩ 𝐵) = {𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵)} | |
| 10 | df-iin 4974 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥)} | |
| 11 | 8, 9, 10 | 3eqtr4i 2767 | 1 ⊢ (𝐴 ∪ ∩ 𝐵) = ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1539 ∈ wcel 2107 {cab 2712 ∀wral 3050 ∪ cun 3929 ∩ cint 4926 ∩ ciin 4972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-v 3465 df-un 3936 df-int 4927 df-iin 4974 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |