Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iinuni | Structured version Visualization version GIF version |
Description: A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
Ref | Expression |
---|---|
iinuni | ⊢ (𝐴 ∪ ∩ 𝐵) = ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.32v 3244 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝐴 ∨ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥)) | |
2 | elun 4037 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 ∪ 𝑥) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥)) | |
3 | 2 | ralbii 3080 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥)) |
4 | vex 3401 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 4 | elint2 4840 | . . . . 5 ⊢ (𝑦 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
6 | 5 | orbi2i 912 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥)) |
7 | 1, 3, 6 | 3bitr4ri 307 | . . 3 ⊢ ((𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵) ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥)) |
8 | 7 | abbii 2803 | . 2 ⊢ {𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵)} = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥)} |
9 | df-un 3846 | . 2 ⊢ (𝐴 ∪ ∩ 𝐵) = {𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵)} | |
10 | df-iin 4881 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥)} | |
11 | 8, 9, 10 | 3eqtr4i 2771 | 1 ⊢ (𝐴 ∪ ∩ 𝐵) = ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 846 = wceq 1542 ∈ wcel 2113 {cab 2716 ∀wral 3053 ∪ cun 3839 ∩ cint 4833 ∩ ciin 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-v 3399 df-un 3846 df-int 4834 df-iin 4881 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |