MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinuni Structured version   Visualization version   GIF version

Theorem iinuni 4832
Description: A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iinuni (𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iinuni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.32v 3293 . . . 4 (∀𝑥𝐵 (𝑦𝐴𝑦𝑥) ↔ (𝑦𝐴 ∨ ∀𝑥𝐵 𝑦𝑥))
2 elun 3982 . . . . 5 (𝑦 ∈ (𝐴𝑥) ↔ (𝑦𝐴𝑦𝑥))
32ralbii 3189 . . . 4 (∀𝑥𝐵 𝑦 ∈ (𝐴𝑥) ↔ ∀𝑥𝐵 (𝑦𝐴𝑦𝑥))
4 vex 3417 . . . . . 6 𝑦 ∈ V
54elint2 4706 . . . . 5 (𝑦 𝐵 ↔ ∀𝑥𝐵 𝑦𝑥)
65orbi2i 941 . . . 4 ((𝑦𝐴𝑦 𝐵) ↔ (𝑦𝐴 ∨ ∀𝑥𝐵 𝑦𝑥))
71, 3, 63bitr4ri 296 . . 3 ((𝑦𝐴𝑦 𝐵) ↔ ∀𝑥𝐵 𝑦 ∈ (𝐴𝑥))
87abbii 2944 . 2 {𝑦 ∣ (𝑦𝐴𝑦 𝐵)} = {𝑦 ∣ ∀𝑥𝐵 𝑦 ∈ (𝐴𝑥)}
9 df-un 3803 . 2 (𝐴 𝐵) = {𝑦 ∣ (𝑦𝐴𝑦 𝐵)}
10 df-iin 4745 . 2 𝑥𝐵 (𝐴𝑥) = {𝑦 ∣ ∀𝑥𝐵 𝑦 ∈ (𝐴𝑥)}
118, 9, 103eqtr4i 2859 1 (𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wo 878   = wceq 1656  wcel 2164  {cab 2811  wral 3117  cun 3796   cint 4699   ciin 4743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-v 3416  df-un 3803  df-int 4700  df-iin 4745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator