![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinuni | Structured version Visualization version GIF version |
Description: A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
Ref | Expression |
---|---|
iinuni | ⊢ (𝐴 ∪ ∩ 𝐵) = ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.32v 3293 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝐴 ∨ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥)) | |
2 | elun 3982 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 ∪ 𝑥) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥)) | |
3 | 2 | ralbii 3189 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝑥)) |
4 | vex 3417 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 4 | elint2 4706 | . . . . 5 ⊢ (𝑦 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
6 | 5 | orbi2i 941 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥)) |
7 | 1, 3, 6 | 3bitr4ri 296 | . . 3 ⊢ ((𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵) ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥)) |
8 | 7 | abbii 2944 | . 2 ⊢ {𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵)} = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥)} |
9 | df-un 3803 | . 2 ⊢ (𝐴 ∪ ∩ 𝐵) = {𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ ∩ 𝐵)} | |
10 | df-iin 4745 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∪ 𝑥)} | |
11 | 8, 9, 10 | 3eqtr4i 2859 | 1 ⊢ (𝐴 ∪ ∩ 𝐵) = ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 878 = wceq 1656 ∈ wcel 2164 {cab 2811 ∀wral 3117 ∪ cun 3796 ∩ cint 4699 ∩ ciin 4743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-v 3416 df-un 3803 df-int 4700 df-iin 4745 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |