MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfun2 Structured version   Visualization version   GIF version

Theorem dfun2 4207
Description: An alternate definition of the union of two classes in terms of class difference, requiring no dummy variables. Along with dfin2 4208 and dfss4 4206 it shows we can express union, intersection, and subset directly in terms of the single "primitive" operation (class difference). (Contributed by NM, 10-Jun-2004.)
Assertion
Ref Expression
dfun2 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵))

Proof of Theorem dfun2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3445 . . . . . . 7 𝑥 ∈ V
2 eldif 3908 . . . . . . 7 (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐴))
31, 2mpbiran 706 . . . . . 6 (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥𝐴)
43anbi1i 624 . . . . 5 ((𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥𝐵) ↔ (¬ 𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 eldif 3908 . . . . 5 (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ (𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥𝐵))
6 ioran 981 . . . . 5 (¬ (𝑥𝐴𝑥𝐵) ↔ (¬ 𝑥𝐴 ∧ ¬ 𝑥𝐵))
74, 5, 63bitr4i 302 . . . 4 (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
87con2bii 357 . . 3 ((𝑥𝐴𝑥𝐵) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵))
9 eldif 3908 . . . 4 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵)))
101, 9mpbiran 706 . . 3 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵))
118, 10bitr4i 277 . 2 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)))
1211uneqri 4099 1 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  wo 844   = wceq 1540  wcel 2105  Vcvv 3441  cdif 3895  cun 3896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443  df-dif 3901  df-un 3903
This theorem is referenced by:  dfun3  4213  dfin3  4214
  Copyright terms: Public domain W3C validator