Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfun2 | Structured version Visualization version GIF version |
Description: An alternate definition of the union of two classes in terms of class difference, requiring no dummy variables. Along with dfin2 4208 and dfss4 4206 it shows we can express union, intersection, and subset directly in terms of the single "primitive" operation ∖ (class difference). (Contributed by NM, 10-Jun-2004.) |
Ref | Expression |
---|---|
dfun2 | ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3445 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | eldif 3908 | . . . . . . 7 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | mpbiran 706 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴) |
4 | 3 | anbi1i 624 | . . . . 5 ⊢ ((𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥 ∈ 𝐵) ↔ (¬ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
5 | eldif 3908 | . . . . 5 ⊢ (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ (𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥 ∈ 𝐵)) | |
6 | ioran 981 | . . . . 5 ⊢ (¬ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ (¬ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4i 302 | . . . 4 ⊢ (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
8 | 7 | con2bii 357 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵)) |
9 | eldif 3908 | . . . 4 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵))) | |
10 | 1, 9 | mpbiran 706 | . . 3 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵)) |
11 | 8, 10 | bitr4i 277 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵))) |
12 | 11 | uneqri 4099 | 1 ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∨ wo 844 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∖ cdif 3895 ∪ cun 3896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-dif 3901 df-un 3903 |
This theorem is referenced by: dfun3 4213 dfin3 4214 |
Copyright terms: Public domain | W3C validator |