MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfun2 Structured version   Visualization version   GIF version

Theorem dfun2 4117
Description: An alternate definition of the union of two classes in terms of class difference, requiring no dummy variables. Along with dfin2 4118 and dfss4 4116 it shows we can express union, intersection, and subset directly in terms of the single "primitive" operation (class difference). (Contributed by NM, 10-Jun-2004.)
Assertion
Ref Expression
dfun2 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵))

Proof of Theorem dfun2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3411 . . . . . . 7 𝑥 ∈ V
2 eldif 3832 . . . . . . 7 (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐴))
31, 2mpbiran 697 . . . . . 6 (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥𝐴)
43anbi1i 615 . . . . 5 ((𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥𝐵) ↔ (¬ 𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 eldif 3832 . . . . 5 (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ (𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥𝐵))
6 ioran 967 . . . . 5 (¬ (𝑥𝐴𝑥𝐵) ↔ (¬ 𝑥𝐴 ∧ ¬ 𝑥𝐵))
74, 5, 63bitr4i 295 . . . 4 (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
87con2bii 350 . . 3 ((𝑥𝐴𝑥𝐵) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵))
9 eldif 3832 . . . 4 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵)))
101, 9mpbiran 697 . . 3 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵))
118, 10bitr4i 270 . 2 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)))
1211uneqri 4009 1 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 387  wo 834   = wceq 1508  wcel 2051  Vcvv 3408  cdif 3819  cun 3820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2743
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-v 3410  df-dif 3825  df-un 3827
This theorem is referenced by:  dfun3  4123  dfin3  4124
  Copyright terms: Public domain W3C validator