| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfun2 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of the union of two classes in terms of class difference, requiring no dummy variables. Along with dfin2 4237 and dfss4 4235 it shows we can express union, intersection, and subset directly in terms of the single "primitive" operation ∖ (class difference). (Contributed by NM, 10-Jun-2004.) |
| Ref | Expression |
|---|---|
| dfun2 | ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 2 | eldif 3927 | . . . . . . 7 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 3 | 1, 2 | mpbiran 709 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴) |
| 4 | 3 | anbi1i 624 | . . . . 5 ⊢ ((𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥 ∈ 𝐵) ↔ (¬ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
| 5 | eldif 3927 | . . . . 5 ⊢ (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ (𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 6 | ioran 985 | . . . . 5 ⊢ (¬ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ (¬ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | . . . 4 ⊢ (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
| 8 | 7 | con2bii 357 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵)) |
| 9 | eldif 3927 | . . . 4 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵))) | |
| 10 | 1, 9 | mpbiran 709 | . . 3 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵)) |
| 11 | 8, 10 | bitr4i 278 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵))) |
| 12 | 11 | uneqri 4122 | 1 ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ∪ cun 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 |
| This theorem is referenced by: dfun3 4242 dfin3 4243 |
| Copyright terms: Public domain | W3C validator |