MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfun2 Structured version   Visualization version   GIF version

Theorem dfun2 4224
Description: An alternate definition of the union of two classes in terms of class difference, requiring no dummy variables. Along with dfin2 4225 and dfss4 4223 it shows we can express union, intersection, and subset directly in terms of the single "primitive" operation (class difference). (Contributed by NM, 10-Jun-2004.)
Assertion
Ref Expression
dfun2 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵))

Proof of Theorem dfun2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3452 . . . . . . 7 𝑥 ∈ V
2 eldif 3925 . . . . . . 7 (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥𝐴))
31, 2mpbiran 708 . . . . . 6 (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥𝐴)
43anbi1i 625 . . . . 5 ((𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥𝐵) ↔ (¬ 𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 eldif 3925 . . . . 5 (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ (𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥𝐵))
6 ioran 983 . . . . 5 (¬ (𝑥𝐴𝑥𝐵) ↔ (¬ 𝑥𝐴 ∧ ¬ 𝑥𝐵))
74, 5, 63bitr4i 303 . . . 4 (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
87con2bii 358 . . 3 ((𝑥𝐴𝑥𝐵) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵))
9 eldif 3925 . . . 4 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵)))
101, 9mpbiran 708 . . 3 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵))
118, 10bitr4i 278 . 2 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)))
1211uneqri 4116 1 (𝐴𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 397  wo 846   = wceq 1542  wcel 2107  Vcvv 3448  cdif 3912  cun 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-v 3450  df-dif 3918  df-un 3920
This theorem is referenced by:  dfun3  4230  dfin3  4231
  Copyright terms: Public domain W3C validator