![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfun2 | Structured version Visualization version GIF version |
Description: An alternate definition of the union of two classes in terms of class difference, requiring no dummy variables. Along with dfin2 4261 and dfss4 4259 it shows we can express union, intersection, and subset directly in terms of the single "primitive" operation ∖ (class difference). (Contributed by NM, 10-Jun-2004.) |
Ref | Expression |
---|---|
dfun2 | ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3479 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | eldif 3959 | . . . . . . 7 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | mpbiran 708 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥 ∈ 𝐴) |
4 | 3 | anbi1i 625 | . . . . 5 ⊢ ((𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥 ∈ 𝐵) ↔ (¬ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
5 | eldif 3959 | . . . . 5 ⊢ (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ (𝑥 ∈ (V ∖ 𝐴) ∧ ¬ 𝑥 ∈ 𝐵)) | |
6 | ioran 983 | . . . . 5 ⊢ (¬ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ (¬ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4i 303 | . . . 4 ⊢ (𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
8 | 7 | con2bii 358 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵)) |
9 | eldif 3959 | . . . 4 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵))) | |
10 | 1, 9 | mpbiran 708 | . . 3 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∖ 𝐵)) |
11 | 8, 10 | bitr4i 278 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∖ 𝐵))) |
12 | 11 | uneqri 4152 | 1 ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∖ cdif 3946 ∪ cun 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-dif 3952 df-un 3954 |
This theorem is referenced by: dfun3 4266 dfin3 4267 |
Copyright terms: Public domain | W3C validator |