Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj98 Structured version   Visualization version   GIF version

Theorem bnj98 34903
Description: Technical lemma for bnj150 34912. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj98 𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))

Proof of Theorem bnj98
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3468 . . . . . 6 𝑖 ∈ V
21sucid 6441 . . . . 5 𝑖 ∈ suc 𝑖
32n0ii 4323 . . . 4 ¬ suc 𝑖 = ∅
4 df-suc 6363 . . . . . 6 suc 𝑖 = (𝑖 ∪ {𝑖})
5 df-un 3936 . . . . . 6 (𝑖 ∪ {𝑖}) = {𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})}
64, 5eqtri 2759 . . . . 5 suc 𝑖 = {𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})}
7 df1o2 8492 . . . . . . 7 1o = {∅}
86, 7eleq12i 2828 . . . . . 6 (suc 𝑖 ∈ 1o ↔ {𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})} ∈ {∅})
9 elsni 4623 . . . . . 6 ({𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})} ∈ {∅} → {𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})} = ∅)
108, 9sylbi 217 . . . . 5 (suc 𝑖 ∈ 1o → {𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})} = ∅)
116, 10eqtrid 2783 . . . 4 (suc 𝑖 ∈ 1o → suc 𝑖 = ∅)
123, 11mto 197 . . 3 ¬ suc 𝑖 ∈ 1o
1312pm2.21i 119 . 2 (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))
1413rgenw 3056 1 𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  {cab 2714  wral 3052  cun 3929  c0 4313  {csn 4606   ciun 4972  suc csuc 6359  cfv 6536  ωcom 7866  1oc1o 8478   predc-bnj14 34724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-v 3466  df-dif 3934  df-un 3936  df-nul 4314  df-sn 4607  df-suc 6363  df-1o 8485
This theorem is referenced by:  bnj150  34912
  Copyright terms: Public domain W3C validator