Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj98 Structured version   Visualization version   GIF version

Theorem bnj98 32141
Description: Technical lemma for bnj150 32150. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj98 𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))

Proof of Theorem bnj98
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3499 . . . . . 6 𝑖 ∈ V
21sucid 6272 . . . . 5 𝑖 ∈ suc 𝑖
32n0ii 4304 . . . 4 ¬ suc 𝑖 = ∅
4 df-suc 6199 . . . . . 6 suc 𝑖 = (𝑖 ∪ {𝑖})
5 df-un 3943 . . . . . 6 (𝑖 ∪ {𝑖}) = {𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})}
64, 5eqtri 2846 . . . . 5 suc 𝑖 = {𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})}
7 df1o2 8118 . . . . . . 7 1o = {∅}
86, 7eleq12i 2907 . . . . . 6 (suc 𝑖 ∈ 1o ↔ {𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})} ∈ {∅})
9 elsni 4586 . . . . . 6 ({𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})} ∈ {∅} → {𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})} = ∅)
108, 9sylbi 219 . . . . 5 (suc 𝑖 ∈ 1o → {𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})} = ∅)
116, 10syl5eq 2870 . . . 4 (suc 𝑖 ∈ 1o → suc 𝑖 = ∅)
123, 11mto 199 . . 3 ¬ suc 𝑖 ∈ 1o
1312pm2.21i 119 . 2 (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))
1413rgenw 3152 1 𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843   = wceq 1537  wcel 2114  {cab 2801  wral 3140  cun 3936  c0 4293  {csn 4569   ciun 4921  suc csuc 6195  cfv 6357  ωcom 7582  1oc1o 8097   predc-bnj14 31960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-v 3498  df-dif 3941  df-un 3943  df-nul 4294  df-sn 4570  df-suc 6199  df-1o 8104
This theorem is referenced by:  bnj150  32150
  Copyright terms: Public domain W3C validator