| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj98 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj150 34912. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj98 | ⊢ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . . . . . 6 ⊢ 𝑖 ∈ V | |
| 2 | 1 | sucid 6441 | . . . . 5 ⊢ 𝑖 ∈ suc 𝑖 |
| 3 | 2 | n0ii 4323 | . . . 4 ⊢ ¬ suc 𝑖 = ∅ |
| 4 | df-suc 6363 | . . . . . 6 ⊢ suc 𝑖 = (𝑖 ∪ {𝑖}) | |
| 5 | df-un 3936 | . . . . . 6 ⊢ (𝑖 ∪ {𝑖}) = {𝑥 ∣ (𝑥 ∈ 𝑖 ∨ 𝑥 ∈ {𝑖})} | |
| 6 | 4, 5 | eqtri 2759 | . . . . 5 ⊢ suc 𝑖 = {𝑥 ∣ (𝑥 ∈ 𝑖 ∨ 𝑥 ∈ {𝑖})} |
| 7 | df1o2 8492 | . . . . . . 7 ⊢ 1o = {∅} | |
| 8 | 6, 7 | eleq12i 2828 | . . . . . 6 ⊢ (suc 𝑖 ∈ 1o ↔ {𝑥 ∣ (𝑥 ∈ 𝑖 ∨ 𝑥 ∈ {𝑖})} ∈ {∅}) |
| 9 | elsni 4623 | . . . . . 6 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑖 ∨ 𝑥 ∈ {𝑖})} ∈ {∅} → {𝑥 ∣ (𝑥 ∈ 𝑖 ∨ 𝑥 ∈ {𝑖})} = ∅) | |
| 10 | 8, 9 | sylbi 217 | . . . . 5 ⊢ (suc 𝑖 ∈ 1o → {𝑥 ∣ (𝑥 ∈ 𝑖 ∨ 𝑥 ∈ {𝑖})} = ∅) |
| 11 | 6, 10 | eqtrid 2783 | . . . 4 ⊢ (suc 𝑖 ∈ 1o → suc 𝑖 = ∅) |
| 12 | 3, 11 | mto 197 | . . 3 ⊢ ¬ suc 𝑖 ∈ 1o |
| 13 | 12 | pm2.21i 119 | . 2 ⊢ (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 14 | 13 | rgenw 3056 | 1 ⊢ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cab 2714 ∀wral 3052 ∪ cun 3929 ∅c0 4313 {csn 4606 ∪ ciun 4972 suc csuc 6359 ‘cfv 6536 ωcom 7866 1oc1o 8478 predc-bnj14 34724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-v 3466 df-dif 3934 df-un 3936 df-nul 4314 df-sn 4607 df-suc 6363 df-1o 8485 |
| This theorem is referenced by: bnj150 34912 |
| Copyright terms: Public domain | W3C validator |