MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unabw Structured version   Visualization version   GIF version

Theorem unabw 4296
Description: Union of two class abstractions. Version of unab 4297 using implicit substitution, which does not require ax-8 2100, ax-10 2129, ax-12 2166. (Contributed by GG, 15-Oct-2024.)
Hypotheses
Ref Expression
unabw.1 (𝑥 = 𝑦 → (𝜑𝜒))
unabw.2 (𝑥 = 𝑦 → (𝜓𝜃))
Assertion
Ref Expression
unabw ({𝑥𝜑} ∪ {𝑥𝜓}) = {𝑦 ∣ (𝜒𝜃)}
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑦   𝜒,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem unabw
StepHypRef Expression
1 df-un 3949 . 2 ({𝑥𝜑} ∪ {𝑥𝜓}) = {𝑦 ∣ (𝑦 ∈ {𝑥𝜑} ∨ 𝑦 ∈ {𝑥𝜓})}
2 df-clab 2703 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
3 unabw.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜒))
43sbievw 2087 . . . . 5 ([𝑦 / 𝑥]𝜑𝜒)
52, 4bitri 274 . . . 4 (𝑦 ∈ {𝑥𝜑} ↔ 𝜒)
6 df-clab 2703 . . . . 5 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
7 unabw.2 . . . . . 6 (𝑥 = 𝑦 → (𝜓𝜃))
87sbievw 2087 . . . . 5 ([𝑦 / 𝑥]𝜓𝜃)
96, 8bitri 274 . . . 4 (𝑦 ∈ {𝑥𝜓} ↔ 𝜃)
105, 9orbi12i 912 . . 3 ((𝑦 ∈ {𝑥𝜑} ∨ 𝑦 ∈ {𝑥𝜓}) ↔ (𝜒𝜃))
1110abbii 2795 . 2 {𝑦 ∣ (𝑦 ∈ {𝑥𝜑} ∨ 𝑦 ∈ {𝑥𝜓})} = {𝑦 ∣ (𝜒𝜃)}
121, 11eqtri 2753 1 ({𝑥𝜑} ∪ {𝑥𝜓}) = {𝑦 ∣ (𝜒𝜃)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 845   = wceq 1533  [wsb 2059  wcel 2098  {cab 2702  cun 3942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-un 3949
This theorem is referenced by:  dfif6  4533  unopab  5231
  Copyright terms: Public domain W3C validator