Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unabw | Structured version Visualization version GIF version |
Description: Union of two class abstractions. Version of unab 4229 using implicit substitution, which does not require ax-8 2110, ax-10 2139, ax-12 2173. (Contributed by Gino Giotto, 15-Oct-2024.) |
Ref | Expression |
---|---|
unabw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
unabw.2 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
unabw | ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑦 ∣ (𝜒 ∨ 𝜃)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-un 3888 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑦 ∣ (𝑦 ∈ {𝑥 ∣ 𝜑} ∨ 𝑦 ∈ {𝑥 ∣ 𝜓})} | |
2 | df-clab 2716 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
3 | unabw.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
4 | 3 | sbievw 2097 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜒) |
5 | 2, 4 | bitri 274 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜒) |
6 | df-clab 2716 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
7 | unabw.2 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) | |
8 | 7 | sbievw 2097 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜃) |
9 | 6, 8 | bitri 274 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ 𝜃) |
10 | 5, 9 | orbi12i 911 | . . 3 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∨ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ (𝜒 ∨ 𝜃)) |
11 | 10 | abbii 2809 | . 2 ⊢ {𝑦 ∣ (𝑦 ∈ {𝑥 ∣ 𝜑} ∨ 𝑦 ∈ {𝑥 ∣ 𝜓})} = {𝑦 ∣ (𝜒 ∨ 𝜃)} |
12 | 1, 11 | eqtri 2766 | 1 ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑦 ∣ (𝜒 ∨ 𝜃)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 843 = wceq 1539 [wsb 2068 ∈ wcel 2108 {cab 2715 ∪ cun 3881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-un 3888 |
This theorem is referenced by: dfif6 4459 unopab 5152 |
Copyright terms: Public domain | W3C validator |