| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unabw | Structured version Visualization version GIF version | ||
| Description: Union of two class abstractions. Version of unab 4288 using implicit substitution, which does not require ax-8 2111, ax-10 2142, ax-12 2178. (Contributed by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| unabw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| unabw.2 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| unabw | ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑦 ∣ (𝜒 ∨ 𝜃)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-un 3936 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑦 ∣ (𝑦 ∈ {𝑥 ∣ 𝜑} ∨ 𝑦 ∈ {𝑥 ∣ 𝜓})} | |
| 2 | df-clab 2715 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | unabw.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 4 | 3 | sbievw 2094 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜒) |
| 5 | 2, 4 | bitri 275 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜒) |
| 6 | df-clab 2715 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 7 | unabw.2 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) | |
| 8 | 7 | sbievw 2094 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜃) |
| 9 | 6, 8 | bitri 275 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ 𝜃) |
| 10 | 5, 9 | orbi12i 914 | . . 3 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∨ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ (𝜒 ∨ 𝜃)) |
| 11 | 10 | abbii 2803 | . 2 ⊢ {𝑦 ∣ (𝑦 ∈ {𝑥 ∣ 𝜑} ∨ 𝑦 ∈ {𝑥 ∣ 𝜓})} = {𝑦 ∣ (𝜒 ∨ 𝜃)} |
| 12 | 1, 11 | eqtri 2759 | 1 ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑦 ∣ (𝜒 ∨ 𝜃)} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2714 ∪ cun 3929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-un 3936 |
| This theorem is referenced by: dfif6 4508 unopab 5205 |
| Copyright terms: Public domain | W3C validator |