MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unabw Structured version   Visualization version   GIF version

Theorem unabw 4254
Description: Union of two class abstractions. Version of unab 4255 using implicit substitution, which does not require ax-8 2113, ax-10 2144, ax-12 2180. (Contributed by GG, 15-Oct-2024.)
Hypotheses
Ref Expression
unabw.1 (𝑥 = 𝑦 → (𝜑𝜒))
unabw.2 (𝑥 = 𝑦 → (𝜓𝜃))
Assertion
Ref Expression
unabw ({𝑥𝜑} ∪ {𝑥𝜓}) = {𝑦 ∣ (𝜒𝜃)}
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑦   𝜒,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem unabw
StepHypRef Expression
1 df-un 3902 . 2 ({𝑥𝜑} ∪ {𝑥𝜓}) = {𝑦 ∣ (𝑦 ∈ {𝑥𝜑} ∨ 𝑦 ∈ {𝑥𝜓})}
2 df-clab 2710 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
3 unabw.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜒))
43sbievw 2096 . . . . 5 ([𝑦 / 𝑥]𝜑𝜒)
52, 4bitri 275 . . . 4 (𝑦 ∈ {𝑥𝜑} ↔ 𝜒)
6 df-clab 2710 . . . . 5 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
7 unabw.2 . . . . . 6 (𝑥 = 𝑦 → (𝜓𝜃))
87sbievw 2096 . . . . 5 ([𝑦 / 𝑥]𝜓𝜃)
96, 8bitri 275 . . . 4 (𝑦 ∈ {𝑥𝜓} ↔ 𝜃)
105, 9orbi12i 914 . . 3 ((𝑦 ∈ {𝑥𝜑} ∨ 𝑦 ∈ {𝑥𝜓}) ↔ (𝜒𝜃))
1110abbii 2798 . 2 {𝑦 ∣ (𝑦 ∈ {𝑥𝜑} ∨ 𝑦 ∈ {𝑥𝜓})} = {𝑦 ∣ (𝜒𝜃)}
121, 11eqtri 2754 1 ({𝑥𝜑} ∪ {𝑥𝜓}) = {𝑦 ∣ (𝜒𝜃)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1541  [wsb 2067  wcel 2111  {cab 2709  cun 3895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-un 3902
This theorem is referenced by:  dfif6  4475  unopab  5169
  Copyright terms: Public domain W3C validator