![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvclss | Structured version Visualization version GIF version |
Description: Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995.) |
Ref | Expression |
---|---|
fvclss | ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ⊆ (ran 𝐹 ∪ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2731 | . . . . . . . . . 10 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
2 | tz6.12i 6910 | . . . . . . . . . 10 ⊢ (𝑦 ≠ ∅ → ((𝐹‘𝑥) = 𝑦 → 𝑥𝐹𝑦)) | |
3 | 1, 2 | biimtrid 241 | . . . . . . . . 9 ⊢ (𝑦 ≠ ∅ → (𝑦 = (𝐹‘𝑥) → 𝑥𝐹𝑦)) |
4 | 3 | eximdv 1912 | . . . . . . . 8 ⊢ (𝑦 ≠ ∅ → (∃𝑥 𝑦 = (𝐹‘𝑥) → ∃𝑥 𝑥𝐹𝑦)) |
5 | vex 3470 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
6 | 5 | elrn 5884 | . . . . . . . 8 ⊢ (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 𝑥𝐹𝑦) |
7 | 4, 6 | imbitrrdi 251 | . . . . . . 7 ⊢ (𝑦 ≠ ∅ → (∃𝑥 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ ran 𝐹)) |
8 | 7 | com12 32 | . . . . . 6 ⊢ (∃𝑥 𝑦 = (𝐹‘𝑥) → (𝑦 ≠ ∅ → 𝑦 ∈ ran 𝐹)) |
9 | 8 | necon1bd 2950 | . . . . 5 ⊢ (∃𝑥 𝑦 = (𝐹‘𝑥) → (¬ 𝑦 ∈ ran 𝐹 → 𝑦 = ∅)) |
10 | velsn 4637 | . . . . 5 ⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) | |
11 | 9, 10 | imbitrrdi 251 | . . . 4 ⊢ (∃𝑥 𝑦 = (𝐹‘𝑥) → (¬ 𝑦 ∈ ran 𝐹 → 𝑦 ∈ {∅})) |
12 | 11 | orrd 860 | . . 3 ⊢ (∃𝑥 𝑦 = (𝐹‘𝑥) → (𝑦 ∈ ran 𝐹 ∨ 𝑦 ∈ {∅})) |
13 | 12 | ss2abi 4056 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ⊆ {𝑦 ∣ (𝑦 ∈ ran 𝐹 ∨ 𝑦 ∈ {∅})} |
14 | df-un 3946 | . 2 ⊢ (ran 𝐹 ∪ {∅}) = {𝑦 ∣ (𝑦 ∈ ran 𝐹 ∨ 𝑦 ∈ {∅})} | |
15 | 13, 14 | sseqtrri 4012 | 1 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ⊆ (ran 𝐹 ∪ {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 844 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2701 ≠ wne 2932 ∪ cun 3939 ⊆ wss 3941 ∅c0 4315 {csn 4621 class class class wbr 5139 ran crn 5668 ‘cfv 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-cnv 5675 df-dm 5677 df-rn 5678 df-iota 6486 df-fv 6542 |
This theorem is referenced by: fvclex 7939 |
Copyright terms: Public domain | W3C validator |