MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvclss Structured version   Visualization version   GIF version

Theorem fvclss 7278
Description: Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995.)
Assertion
Ref Expression
fvclss {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ (ran 𝐹 ∪ {∅})
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem fvclss
StepHypRef Expression
1 eqcom 2747 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
2 tz6.12i 6948 . . . . . . . . . 10 (𝑦 ≠ ∅ → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
31, 2biimtrid 242 . . . . . . . . 9 (𝑦 ≠ ∅ → (𝑦 = (𝐹𝑥) → 𝑥𝐹𝑦))
43eximdv 1916 . . . . . . . 8 (𝑦 ≠ ∅ → (∃𝑥 𝑦 = (𝐹𝑥) → ∃𝑥 𝑥𝐹𝑦))
5 vex 3492 . . . . . . . . 9 𝑦 ∈ V
65elrn 5918 . . . . . . . 8 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 𝑥𝐹𝑦)
74, 6imbitrrdi 252 . . . . . . 7 (𝑦 ≠ ∅ → (∃𝑥 𝑦 = (𝐹𝑥) → 𝑦 ∈ ran 𝐹))
87com12 32 . . . . . 6 (∃𝑥 𝑦 = (𝐹𝑥) → (𝑦 ≠ ∅ → 𝑦 ∈ ran 𝐹))
98necon1bd 2964 . . . . 5 (∃𝑥 𝑦 = (𝐹𝑥) → (¬ 𝑦 ∈ ran 𝐹𝑦 = ∅))
10 velsn 4664 . . . . 5 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
119, 10imbitrrdi 252 . . . 4 (∃𝑥 𝑦 = (𝐹𝑥) → (¬ 𝑦 ∈ ran 𝐹𝑦 ∈ {∅}))
1211orrd 862 . . 3 (∃𝑥 𝑦 = (𝐹𝑥) → (𝑦 ∈ ran 𝐹𝑦 ∈ {∅}))
1312ss2abi 4090 . 2 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ {𝑦 ∣ (𝑦 ∈ ran 𝐹𝑦 ∈ {∅})}
14 df-un 3981 . 2 (ran 𝐹 ∪ {∅}) = {𝑦 ∣ (𝑦 ∈ ran 𝐹𝑦 ∈ {∅})}
1513, 14sseqtrri 4046 1 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ (ran 𝐹 ∪ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 846   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  cun 3974  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  ran crn 5701  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711  df-iota 6525  df-fv 6581
This theorem is referenced by:  fvclex  7999
  Copyright terms: Public domain W3C validator