MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvclss Structured version   Visualization version   GIF version

Theorem fvclss 7001
Description: Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995.)
Assertion
Ref Expression
fvclss {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ (ran 𝐹 ∪ {∅})
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem fvclss
StepHypRef Expression
1 eqcom 2828 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
2 tz6.12i 6696 . . . . . . . . . 10 (𝑦 ≠ ∅ → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
31, 2syl5bi 244 . . . . . . . . 9 (𝑦 ≠ ∅ → (𝑦 = (𝐹𝑥) → 𝑥𝐹𝑦))
43eximdv 1918 . . . . . . . 8 (𝑦 ≠ ∅ → (∃𝑥 𝑦 = (𝐹𝑥) → ∃𝑥 𝑥𝐹𝑦))
5 vex 3497 . . . . . . . . 9 𝑦 ∈ V
65elrn 5822 . . . . . . . 8 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 𝑥𝐹𝑦)
74, 6syl6ibr 254 . . . . . . 7 (𝑦 ≠ ∅ → (∃𝑥 𝑦 = (𝐹𝑥) → 𝑦 ∈ ran 𝐹))
87com12 32 . . . . . 6 (∃𝑥 𝑦 = (𝐹𝑥) → (𝑦 ≠ ∅ → 𝑦 ∈ ran 𝐹))
98necon1bd 3034 . . . . 5 (∃𝑥 𝑦 = (𝐹𝑥) → (¬ 𝑦 ∈ ran 𝐹𝑦 = ∅))
10 velsn 4583 . . . . 5 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
119, 10syl6ibr 254 . . . 4 (∃𝑥 𝑦 = (𝐹𝑥) → (¬ 𝑦 ∈ ran 𝐹𝑦 ∈ {∅}))
1211orrd 859 . . 3 (∃𝑥 𝑦 = (𝐹𝑥) → (𝑦 ∈ ran 𝐹𝑦 ∈ {∅}))
1312ss2abi 4043 . 2 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ {𝑦 ∣ (𝑦 ∈ ran 𝐹𝑦 ∈ {∅})}
14 df-un 3941 . 2 (ran 𝐹 ∪ {∅}) = {𝑦 ∣ (𝑦 ∈ ran 𝐹𝑦 ∈ {∅})}
1513, 14sseqtrri 4004 1 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ (ran 𝐹 ∪ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 843   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wne 3016  cun 3934  wss 3936  c0 4291  {csn 4567   class class class wbr 5066  ran crn 5556  cfv 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-cnv 5563  df-dm 5565  df-rn 5566  df-iota 6314  df-fv 6363
This theorem is referenced by:  fvclex  7660
  Copyright terms: Public domain W3C validator