MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvclss Structured version   Visualization version   GIF version

Theorem fvclss 7261
Description: Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995.)
Assertion
Ref Expression
fvclss {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ (ran 𝐹 ∪ {∅})
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem fvclss
StepHypRef Expression
1 eqcom 2742 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
2 tz6.12i 6935 . . . . . . . . . 10 (𝑦 ≠ ∅ → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
31, 2biimtrid 242 . . . . . . . . 9 (𝑦 ≠ ∅ → (𝑦 = (𝐹𝑥) → 𝑥𝐹𝑦))
43eximdv 1915 . . . . . . . 8 (𝑦 ≠ ∅ → (∃𝑥 𝑦 = (𝐹𝑥) → ∃𝑥 𝑥𝐹𝑦))
5 vex 3482 . . . . . . . . 9 𝑦 ∈ V
65elrn 5907 . . . . . . . 8 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 𝑥𝐹𝑦)
74, 6imbitrrdi 252 . . . . . . 7 (𝑦 ≠ ∅ → (∃𝑥 𝑦 = (𝐹𝑥) → 𝑦 ∈ ran 𝐹))
87com12 32 . . . . . 6 (∃𝑥 𝑦 = (𝐹𝑥) → (𝑦 ≠ ∅ → 𝑦 ∈ ran 𝐹))
98necon1bd 2956 . . . . 5 (∃𝑥 𝑦 = (𝐹𝑥) → (¬ 𝑦 ∈ ran 𝐹𝑦 = ∅))
10 velsn 4647 . . . . 5 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
119, 10imbitrrdi 252 . . . 4 (∃𝑥 𝑦 = (𝐹𝑥) → (¬ 𝑦 ∈ ran 𝐹𝑦 ∈ {∅}))
1211orrd 863 . . 3 (∃𝑥 𝑦 = (𝐹𝑥) → (𝑦 ∈ ran 𝐹𝑦 ∈ {∅}))
1312ss2abi 4077 . 2 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ {𝑦 ∣ (𝑦 ∈ ran 𝐹𝑦 ∈ {∅})}
14 df-un 3968 . 2 (ran 𝐹 ∪ {∅}) = {𝑦 ∣ (𝑦 ∈ ran 𝐹𝑦 ∈ {∅})}
1513, 14sseqtrri 4033 1 {𝑦 ∣ ∃𝑥 𝑦 = (𝐹𝑥)} ⊆ (ran 𝐹 ∪ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wne 2938  cun 3961  wss 3963  c0 4339  {csn 4631   class class class wbr 5148  ran crn 5690  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-cnv 5697  df-dm 5699  df-rn 5700  df-iota 6516  df-fv 6571
This theorem is referenced by:  fvclex  7982
  Copyright terms: Public domain W3C validator