Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafv22 Structured version   Visualization version   GIF version

Theorem dfafv22 45169
Description: Alternate definition of (𝐹''''𝐴) using (𝐹𝐴) directly. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
dfafv22 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹)

Proof of Theorem dfafv22
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 45119 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
2 df-fv 6488 . . . 4 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
32eqcomi 2745 . . 3 (℩𝑥𝐴𝐹𝑥) = (𝐹𝐴)
4 ifeq1 4478 . . 3 ((℩𝑥𝐴𝐹𝑥) = (𝐹𝐴) → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹))
53, 4ax-mp 5 . 2 if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹)
61, 5eqtri 2764 1 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ifcif 4474  𝒫 cpw 4548   cuni 4853   class class class wbr 5093  ran crn 5622  cio 6430  cfv 6480   defAt wdfat 45026  ''''cafv2 45118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-un 3903  df-if 4475  df-fv 6488  df-afv2 45119
This theorem is referenced by:  dfatafv2eqfv  45171
  Copyright terms: Public domain W3C validator