![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafv22 | Structured version Visualization version GIF version |
Description: Alternate definition of (𝐹''''𝐴) using (𝐹‘𝐴) directly. (Contributed by AV, 3-Sep-2022.) |
Ref | Expression |
---|---|
dfafv22 | ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 42109 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
2 | df-fv 6135 | . . . 4 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
3 | 2 | eqcomi 2834 | . . 3 ⊢ (℩𝑥𝐴𝐹𝑥) = (𝐹‘𝐴) |
4 | ifeq1 4312 | . . 3 ⊢ ((℩𝑥𝐴𝐹𝑥) = (𝐹‘𝐴) → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) |
6 | 1, 5 | eqtri 2849 | 1 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 ifcif 4308 𝒫 cpw 4380 ∪ cuni 4660 class class class wbr 4875 ran crn 5347 ℩cio 6088 ‘cfv 6127 defAt wdfat 42016 ''''cafv2 42108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rab 3126 df-v 3416 df-un 3803 df-if 4309 df-fv 6135 df-afv2 42109 |
This theorem is referenced by: dfatafv2eqfv 42161 |
Copyright terms: Public domain | W3C validator |