Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafv22 Structured version   Visualization version   GIF version

Theorem dfafv22 44638
Description: Alternate definition of (𝐹''''𝐴) using (𝐹𝐴) directly. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
dfafv22 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹)

Proof of Theorem dfafv22
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 44588 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
2 df-fv 6426 . . . 4 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
32eqcomi 2747 . . 3 (℩𝑥𝐴𝐹𝑥) = (𝐹𝐴)
4 ifeq1 4460 . . 3 ((℩𝑥𝐴𝐹𝑥) = (𝐹𝐴) → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹))
53, 4ax-mp 5 . 2 if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹)
61, 5eqtri 2766 1 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ifcif 4456  𝒫 cpw 4530   cuni 4836   class class class wbr 5070  ran crn 5581  cio 6374  cfv 6418   defAt wdfat 44495  ''''cafv2 44587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-un 3888  df-if 4457  df-fv 6426  df-afv2 44588
This theorem is referenced by:  dfatafv2eqfv  44640
  Copyright terms: Public domain W3C validator