Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafv22 | Structured version Visualization version GIF version |
Description: Alternate definition of (𝐹''''𝐴) using (𝐹‘𝐴) directly. (Contributed by AV, 3-Sep-2022.) |
Ref | Expression |
---|---|
dfafv22 | ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 45119 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
2 | df-fv 6488 | . . . 4 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
3 | 2 | eqcomi 2745 | . . 3 ⊢ (℩𝑥𝐴𝐹𝑥) = (𝐹‘𝐴) |
4 | ifeq1 4478 | . . 3 ⊢ ((℩𝑥𝐴𝐹𝑥) = (𝐹‘𝐴) → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) |
6 | 1, 5 | eqtri 2764 | 1 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ifcif 4474 𝒫 cpw 4548 ∪ cuni 4853 class class class wbr 5093 ran crn 5622 ℩cio 6430 ‘cfv 6480 defAt wdfat 45026 ''''cafv2 45118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-un 3903 df-if 4475 df-fv 6488 df-afv2 45119 |
This theorem is referenced by: dfatafv2eqfv 45171 |
Copyright terms: Public domain | W3C validator |