Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafv22 Structured version   Visualization version   GIF version

Theorem dfafv22 45957
Description: Alternate definition of (𝐹''''𝐴) using (𝐹𝐴) directly. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
dfafv22 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹)

Proof of Theorem dfafv22
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 45907 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
2 df-fv 6551 . . . 4 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
32eqcomi 2741 . . 3 (℩𝑥𝐴𝐹𝑥) = (𝐹𝐴)
4 ifeq1 4532 . . 3 ((℩𝑥𝐴𝐹𝑥) = (𝐹𝐴) → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹))
53, 4ax-mp 5 . 2 if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹)
61, 5eqtri 2760 1 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  ifcif 4528  𝒫 cpw 4602   cuni 4908   class class class wbr 5148  ran crn 5677  cio 6493  cfv 6543   defAt wdfat 45814  ''''cafv2 45906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-un 3953  df-if 4529  df-fv 6551  df-afv2 45907
This theorem is referenced by:  dfatafv2eqfv  45959
  Copyright terms: Public domain W3C validator