| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafv22 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of (𝐹''''𝐴) using (𝐹‘𝐴) directly. (Contributed by AV, 3-Sep-2022.) |
| Ref | Expression |
|---|---|
| dfafv22 | ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-afv2 47197 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
| 2 | df-fv 6490 | . . . 4 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 3 | 2 | eqcomi 2738 | . . 3 ⊢ (℩𝑥𝐴𝐹𝑥) = (𝐹‘𝐴) |
| 4 | ifeq1 4480 | . . 3 ⊢ ((℩𝑥𝐴𝐹𝑥) = (𝐹‘𝐴) → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) |
| 6 | 1, 5 | eqtri 2752 | 1 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4476 𝒫 cpw 4551 ∪ cuni 4858 class class class wbr 5092 ran crn 5620 ℩cio 6436 ‘cfv 6482 defAt wdfat 47104 ''''cafv2 47196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-un 3908 df-if 4477 df-fv 6490 df-afv2 47197 |
| This theorem is referenced by: dfatafv2eqfv 47249 |
| Copyright terms: Public domain | W3C validator |