|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafv22 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of (𝐹''''𝐴) using (𝐹‘𝐴) directly. (Contributed by AV, 3-Sep-2022.) | 
| Ref | Expression | 
|---|---|
| dfafv22 | ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-afv2 47226 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
| 2 | df-fv 6568 | . . . 4 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 3 | 2 | eqcomi 2745 | . . 3 ⊢ (℩𝑥𝐴𝐹𝑥) = (𝐹‘𝐴) | 
| 4 | ifeq1 4528 | . . 3 ⊢ ((℩𝑥𝐴𝐹𝑥) = (𝐹‘𝐴) → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) | 
| 6 | 1, 5 | eqtri 2764 | 1 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 ifcif 4524 𝒫 cpw 4599 ∪ cuni 4906 class class class wbr 5142 ran crn 5685 ℩cio 6511 ‘cfv 6560 defAt wdfat 47133 ''''cafv2 47225 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-un 3955 df-if 4525 df-fv 6568 df-afv2 47226 | 
| This theorem is referenced by: dfatafv2eqfv 47278 | 
| Copyright terms: Public domain | W3C validator |