| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafv22 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of (𝐹''''𝐴) using (𝐹‘𝐴) directly. (Contributed by AV, 3-Sep-2022.) |
| Ref | Expression |
|---|---|
| dfafv22 | ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-afv2 47180 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
| 2 | df-fv 6527 | . . . 4 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 3 | 2 | eqcomi 2739 | . . 3 ⊢ (℩𝑥𝐴𝐹𝑥) = (𝐹‘𝐴) |
| 4 | ifeq1 4500 | . . 3 ⊢ ((℩𝑥𝐴𝐹𝑥) = (𝐹‘𝐴) → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) |
| 6 | 1, 5 | eqtri 2753 | 1 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4496 𝒫 cpw 4571 ∪ cuni 4879 class class class wbr 5115 ran crn 5647 ℩cio 6470 ‘cfv 6519 defAt wdfat 47087 ''''cafv2 47179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-un 3927 df-if 4497 df-fv 6527 df-afv2 47180 |
| This theorem is referenced by: dfatafv2eqfv 47232 |
| Copyright terms: Public domain | W3C validator |