| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| ifeq1 | ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3417 | . . 3 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) | |
| 2 | 1 | uneq1d 4126 | . 2 ⊢ (𝐴 = 𝐵 → ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑}) = ({𝑥 ∈ 𝐵 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑})) |
| 3 | dfif6 4487 | . 2 ⊢ if(𝜑, 𝐴, 𝐶) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑}) | |
| 4 | dfif6 4487 | . 2 ⊢ if(𝜑, 𝐵, 𝐶) = ({𝑥 ∈ 𝐵 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 {crab 3402 ∪ cun 3909 ifcif 4484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-un 3916 df-if 4485 |
| This theorem is referenced by: ifeq12 4503 ifeq1d 4504 ifbieq12i 4512 rdgeq2 8357 dfoi 9440 wemaplem2 9476 cantnflem1 9618 prodeq2w 15852 prodeq2ii 15853 mgm2nsgrplem2 18822 mgm2nsgrplem3 18823 mplcoe3 21921 marrepval0 22424 ellimc 25750 ply1nzb 26004 dchrvmasumiflem1 27388 signspval 34516 dfrdg2 35756 sumeq2si 36163 prodeq2si 36165 dfafv22 47233 |
| Copyright terms: Public domain | W3C validator |