| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| ifeq1 | ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3420 | . . 3 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) | |
| 2 | 1 | uneq1d 4130 | . 2 ⊢ (𝐴 = 𝐵 → ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑}) = ({𝑥 ∈ 𝐵 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑})) |
| 3 | dfif6 4491 | . 2 ⊢ if(𝜑, 𝐴, 𝐶) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑}) | |
| 4 | dfif6 4491 | . 2 ⊢ if(𝜑, 𝐵, 𝐶) = ({𝑥 ∈ 𝐵 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 {crab 3405 ∪ cun 3912 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-un 3919 df-if 4489 |
| This theorem is referenced by: ifeq12 4507 ifeq1d 4508 ifbieq12i 4516 rdgeq2 8380 dfoi 9464 wemaplem2 9500 cantnflem1 9642 prodeq2w 15876 prodeq2ii 15877 mgm2nsgrplem2 18846 mgm2nsgrplem3 18847 mplcoe3 21945 marrepval0 22448 ellimc 25774 ply1nzb 26028 dchrvmasumiflem1 27412 signspval 34543 dfrdg2 35783 sumeq2si 36190 prodeq2si 36192 dfafv22 47260 |
| Copyright terms: Public domain | W3C validator |