MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq1 Structured version   Visualization version   GIF version

Theorem ifeq1 4529
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
ifeq1 (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶))

Proof of Theorem ifeq1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rabeq 3451 . . 3 (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
21uneq1d 4167 . 2 (𝐴 = 𝐵 → ({𝑥𝐴𝜑} ∪ {𝑥𝐶 ∣ ¬ 𝜑}) = ({𝑥𝐵𝜑} ∪ {𝑥𝐶 ∣ ¬ 𝜑}))
3 dfif6 4528 . 2 if(𝜑, 𝐴, 𝐶) = ({𝑥𝐴𝜑} ∪ {𝑥𝐶 ∣ ¬ 𝜑})
4 dfif6 4528 . 2 if(𝜑, 𝐵, 𝐶) = ({𝑥𝐵𝜑} ∪ {𝑥𝐶 ∣ ¬ 𝜑})
52, 3, 43eqtr4g 2802 1 (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  {crab 3436  cun 3949  ifcif 4525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-un 3956  df-if 4526
This theorem is referenced by:  ifeq12  4544  ifeq1d  4545  ifbieq12i  4553  rdgeq2  8452  dfoi  9551  wemaplem2  9587  cantnflem1  9729  prodeq2w  15946  prodeq2ii  15947  mgm2nsgrplem2  18932  mgm2nsgrplem3  18933  mplcoe3  22056  marrepval0  22567  ellimc  25908  ply1nzb  26162  dchrvmasumiflem1  27545  signspval  34567  dfrdg2  35796  sumeq2si  36203  prodeq2si  36205  dfafv22  47271
  Copyright terms: Public domain W3C validator