MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq1 Structured version   Visualization version   GIF version

Theorem ifeq1 4533
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
ifeq1 (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶))

Proof of Theorem ifeq1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rabeq 3447 . . 3 (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
21uneq1d 4163 . 2 (𝐴 = 𝐵 → ({𝑥𝐴𝜑} ∪ {𝑥𝐶 ∣ ¬ 𝜑}) = ({𝑥𝐵𝜑} ∪ {𝑥𝐶 ∣ ¬ 𝜑}))
3 dfif6 4532 . 2 if(𝜑, 𝐴, 𝐶) = ({𝑥𝐴𝜑} ∪ {𝑥𝐶 ∣ ¬ 𝜑})
4 dfif6 4532 . 2 if(𝜑, 𝐵, 𝐶) = ({𝑥𝐵𝜑} ∪ {𝑥𝐶 ∣ ¬ 𝜑})
52, 3, 43eqtr4g 2798 1 (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  {crab 3433  cun 3947  ifcif 4529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-un 3954  df-if 4530
This theorem is referenced by:  ifeq12  4547  ifeq1d  4548  ifbieq12i  4556  rdgeq2  8412  dfoi  9506  wemaplem2  9542  cantnflem1  9684  prodeq2w  15856  prodeq2ii  15857  mgm2nsgrplem2  18800  mgm2nsgrplem3  18801  mplcoe3  21593  marrepval0  22063  ellimc  25390  ply1nzb  25640  dchrvmasumiflem1  27004  signspval  33563  dfrdg2  34767  dfafv22  45967
  Copyright terms: Public domain W3C validator