![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
ifeq1 | ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3458 | . . 3 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) | |
2 | 1 | uneq1d 4190 | . 2 ⊢ (𝐴 = 𝐵 → ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑}) = ({𝑥 ∈ 𝐵 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑})) |
3 | dfif6 4551 | . 2 ⊢ if(𝜑, 𝐴, 𝐶) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑}) | |
4 | dfif6 4551 | . 2 ⊢ if(𝜑, 𝐵, 𝐶) = ({𝑥 ∈ 𝐵 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑}) | |
5 | 2, 3, 4 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 {crab 3443 ∪ cun 3974 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-un 3981 df-if 4549 |
This theorem is referenced by: ifeq12 4566 ifeq1d 4567 ifbieq12i 4575 rdgeq2 8468 dfoi 9580 wemaplem2 9616 cantnflem1 9758 prodeq2w 15958 prodeq2ii 15959 mgm2nsgrplem2 18954 mgm2nsgrplem3 18955 mplcoe3 22079 marrepval0 22588 ellimc 25928 ply1nzb 26182 dchrvmasumiflem1 27563 signspval 34529 dfrdg2 35759 sumeq2si 36166 prodeq2si 36168 dfafv22 47174 |
Copyright terms: Public domain | W3C validator |