| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| ifeq1 | ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3409 | . . 3 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) | |
| 2 | 1 | uneq1d 4114 | . 2 ⊢ (𝐴 = 𝐵 → ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑}) = ({𝑥 ∈ 𝐵 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑})) |
| 3 | dfif6 4475 | . 2 ⊢ if(𝜑, 𝐴, 𝐶) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑}) | |
| 4 | dfif6 4475 | . 2 ⊢ if(𝜑, 𝐵, 𝐶) = ({𝑥 ∈ 𝐵 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 {crab 3395 ∪ cun 3895 ifcif 4472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-un 3902 df-if 4473 |
| This theorem is referenced by: ifeq12 4491 ifeq1d 4492 ifbieq12i 4500 rdgeq2 8331 dfoi 9397 wemaplem2 9433 cantnflem1 9579 prodeq2w 15817 prodeq2ii 15818 mgm2nsgrplem2 18827 mgm2nsgrplem3 18828 mplcoe3 21973 marrepval0 22476 ellimc 25801 ply1nzb 26055 dchrvmasumiflem1 27439 signspval 34565 dfrdg2 35837 sumeq2si 36246 prodeq2si 36248 dfafv22 47369 |
| Copyright terms: Public domain | W3C validator |