Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rlimdmafv2 Structured version   Visualization version   GIF version

Theorem rlimdmafv2 45480
Description: Two ways to express that a function has a limit, analogous to rlimdm 15433. (Contributed by AV, 5-Sep-2022.)
Hypotheses
Ref Expression
rlimdmafv2.1 (𝜑𝐹:𝐴⟶ℂ)
rlimdmafv2.2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
Assertion
Ref Expression
rlimdmafv2 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟 ''''𝐹)))

Proof of Theorem rlimdmafv2
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldmg 5854 . . . 4 (𝐹 ∈ dom ⇝𝑟 → (𝐹 ∈ dom ⇝𝑟 ↔ ∃𝑥 𝐹𝑟 𝑥))
21ibi 266 . . 3 (𝐹 ∈ dom ⇝𝑟 → ∃𝑥 𝐹𝑟 𝑥)
3 simpr 485 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 𝑥)
4 rlimrel 15375 . . . . . . . . . . . 12 Rel ⇝𝑟
54brrelex1i 5688 . . . . . . . . . . 11 (𝐹𝑟 𝑥𝐹 ∈ V)
65adantl 482 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → 𝐹 ∈ V)
7 vex 3449 . . . . . . . . . . 11 𝑥 ∈ V
87a1i 11 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → 𝑥 ∈ V)
9 breldmg 5865 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝑥 ∈ V ∧ 𝐹𝑟 𝑥) → 𝐹 ∈ dom ⇝𝑟 )
106, 8, 3, 9syl3anc 1371 . . . . . . . . 9 ((𝜑𝐹𝑟 𝑥) → 𝐹 ∈ dom ⇝𝑟 )
11 breq2 5109 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝐹𝑟 𝑦𝐹𝑟 𝑥))
1211biimprd 247 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹𝑟 𝑥𝐹𝑟 𝑦))
1312spimevw 1998 . . . . . . . . . . 11 (𝐹𝑟 𝑥 → ∃𝑦 𝐹𝑟 𝑦)
1413adantl 482 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → ∃𝑦 𝐹𝑟 𝑦)
15 rlimdmafv2.1 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℂ)
1615adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐹𝑟 𝑥) → 𝐹:𝐴⟶ℂ)
1716adantr 481 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝐹:𝐴⟶ℂ)
18 rlimdmafv2.2 . . . . . . . . . . . . . . 15 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
1918adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐹𝑟 𝑥) → sup(𝐴, ℝ*, < ) = +∞)
2019adantr 481 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → sup(𝐴, ℝ*, < ) = +∞)
21 simprl 769 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝐹𝑟 𝑦)
22 simprr 771 . . . . . . . . . . . . 13 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝐹𝑟 𝑧)
2317, 20, 21, 22rlimuni 15432 . . . . . . . . . . . 12 (((𝜑𝐹𝑟 𝑥) ∧ (𝐹𝑟 𝑦𝐹𝑟 𝑧)) → 𝑦 = 𝑧)
2423ex 413 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → ((𝐹𝑟 𝑦𝐹𝑟 𝑧) → 𝑦 = 𝑧))
2524alrimivv 1931 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → ∀𝑦𝑧((𝐹𝑟 𝑦𝐹𝑟 𝑧) → 𝑦 = 𝑧))
26 breq2 5109 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐹𝑟 𝑦𝐹𝑟 𝑧))
2726eu4 2615 . . . . . . . . . 10 (∃!𝑦 𝐹𝑟 𝑦 ↔ (∃𝑦 𝐹𝑟 𝑦 ∧ ∀𝑦𝑧((𝐹𝑟 𝑦𝐹𝑟 𝑧) → 𝑦 = 𝑧)))
2814, 25, 27sylanbrc 583 . . . . . . . . 9 ((𝜑𝐹𝑟 𝑥) → ∃!𝑦 𝐹𝑟 𝑦)
29 dfdfat2 45350 . . . . . . . . 9 ( ⇝𝑟 defAt 𝐹 ↔ (𝐹 ∈ dom ⇝𝑟 ∧ ∃!𝑦 𝐹𝑟 𝑦))
3010, 28, 29sylanbrc 583 . . . . . . . 8 ((𝜑𝐹𝑟 𝑥) → ⇝𝑟 defAt 𝐹)
31 dfatafv2iota 45432 . . . . . . . 8 ( ⇝𝑟 defAt 𝐹 → ( ⇝𝑟 ''''𝐹) = (℩𝑤𝐹𝑟 𝑤))
3230, 31syl 17 . . . . . . 7 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟 ''''𝐹) = (℩𝑤𝐹𝑟 𝑤))
3315adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝐹:𝐴⟶ℂ)
3418adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → sup(𝐴, ℝ*, < ) = +∞)
35 simprr 771 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝐹𝑟 𝑤)
36 simprl 769 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝐹𝑟 𝑥)
3733, 34, 35, 36rlimuni 15432 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑤)) → 𝑤 = 𝑥)
3837expr 457 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑤𝑤 = 𝑥))
39 breq2 5109 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝐹𝑟 𝑤𝐹𝑟 𝑥))
403, 39syl5ibrcom 246 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → (𝑤 = 𝑥𝐹𝑟 𝑤))
4138, 40impbid 211 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑤𝑤 = 𝑥))
4241adantr 481 . . . . . . . . 9 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (𝐹𝑟 𝑤𝑤 = 𝑥))
4342iota5 6479 . . . . . . . 8 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (℩𝑤𝐹𝑟 𝑤) = 𝑥)
4443elvd 3452 . . . . . . 7 ((𝜑𝐹𝑟 𝑥) → (℩𝑤𝐹𝑟 𝑤) = 𝑥)
4532, 44eqtrd 2776 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟 ''''𝐹) = 𝑥)
463, 45breqtrrd 5133 . . . . 5 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 ( ⇝𝑟 ''''𝐹))
4746ex 413 . . . 4 (𝜑 → (𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟 ''''𝐹)))
4847exlimdv 1936 . . 3 (𝜑 → (∃𝑥 𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟 ''''𝐹)))
492, 48syl5 34 . 2 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟 ''''𝐹)))
504releldmi 5903 . 2 (𝐹𝑟 ( ⇝𝑟 ''''𝐹) → 𝐹 ∈ dom ⇝𝑟 )
5149, 50impbid1 224 1 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟 ''''𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wex 1781  wcel 2106  ∃!weu 2566  Vcvv 3445   class class class wbr 5105  dom cdm 5633  cio 6446  wf 6492  supcsup 9376  cc 11049  +∞cpnf 11186  *cxr 11188   < clt 11189  𝑟 crli 15367   defAt wdfat 45338  ''''cafv2 45430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-rlim 15371  df-dfat 45341  df-afv2 45431
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator