| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatafv2eqfv | Structured version Visualization version GIF version | ||
| Description: If a function is defined at a class 𝐴, the alternate function value equals the function's value at 𝐴. (Contributed by AV, 3-Sep-2022.) |
| Ref | Expression |
|---|---|
| dfatafv2eqfv | ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfafv22 47224 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) | |
| 2 | iftrue 4504 | . 2 ⊢ (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) = (𝐹‘𝐴)) | |
| 3 | 1, 2 | eqtrid 2781 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ifcif 4498 𝒫 cpw 4573 ∪ cuni 4881 ran crn 5653 ‘cfv 6528 defAt wdfat 47081 ''''cafv2 47173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-un 3929 df-if 4499 df-fv 6536 df-afv2 47174 |
| This theorem is referenced by: afv2rnfveq 47227 afv20fv0 47228 afv2fvn0fveq 47229 |
| Copyright terms: Public domain | W3C validator |