Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatafv2eqfv Structured version   Visualization version   GIF version

Theorem dfatafv2eqfv 47176
Description: If a function is defined at a class 𝐴, the alternate function value equals the function's value at 𝐴. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
dfatafv2eqfv (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹𝐴))

Proof of Theorem dfatafv2eqfv
StepHypRef Expression
1 dfafv22 47174 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹)
2 iftrue 4554 . 2 (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹) = (𝐹𝐴))
31, 2eqtrid 2792 1 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  ifcif 4548  𝒫 cpw 4622   cuni 4931  ran crn 5701  cfv 6573   defAt wdfat 47031  ''''cafv2 47123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-un 3981  df-if 4549  df-fv 6581  df-afv2 47124
This theorem is referenced by:  afv2rnfveq  47177  afv20fv0  47178  afv2fvn0fveq  47179
  Copyright terms: Public domain W3C validator