Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatafv2eqfv | Structured version Visualization version GIF version |
Description: If a function is defined at a class 𝐴, the alternate function value equals the function's value at 𝐴. (Contributed by AV, 3-Sep-2022.) |
Ref | Expression |
---|---|
dfatafv2eqfv | ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfafv22 44638 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) | |
2 | iftrue 4462 | . 2 ⊢ (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) = (𝐹‘𝐴)) | |
3 | 1, 2 | syl5eq 2791 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ifcif 4456 𝒫 cpw 4530 ∪ cuni 4836 ran crn 5581 ‘cfv 6418 defAt wdfat 44495 ''''cafv2 44587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-un 3888 df-if 4457 df-fv 6426 df-afv2 44588 |
This theorem is referenced by: afv2rnfveq 44641 afv20fv0 44642 afv2fvn0fveq 44643 |
Copyright terms: Public domain | W3C validator |