Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatafv2eqfv | Structured version Visualization version GIF version |
Description: If a function is defined at a class 𝐴, the alternate function value equals the function's value at 𝐴. (Contributed by AV, 3-Sep-2022.) |
Ref | Expression |
---|---|
dfatafv2eqfv | ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfafv22 44232 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) | |
2 | iftrue 4429 | . 2 ⊢ (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) = (𝐹‘𝐴)) | |
3 | 1, 2 | syl5eq 2805 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ifcif 4423 𝒫 cpw 4497 ∪ cuni 4801 ran crn 5529 ‘cfv 6340 defAt wdfat 44089 ''''cafv2 44181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-v 3411 df-un 3865 df-if 4424 df-fv 6348 df-afv2 44182 |
This theorem is referenced by: afv2rnfveq 44235 afv20fv0 44236 afv2fvn0fveq 44237 |
Copyright terms: Public domain | W3C validator |