Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatafv2eqfv Structured version   Visualization version   GIF version

Theorem dfatafv2eqfv 45969
Description: If a function is defined at a class 𝐴, the alternate function value equals the function's value at 𝐴. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
dfatafv2eqfv (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹𝐴))

Proof of Theorem dfatafv2eqfv
StepHypRef Expression
1 dfafv22 45967 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹)
2 iftrue 4535 . 2 (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (𝐹𝐴), 𝒫 ran 𝐹) = (𝐹𝐴))
31, 2eqtrid 2785 1 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  ifcif 4529  𝒫 cpw 4603   cuni 4909  ran crn 5678  cfv 6544   defAt wdfat 45824  ''''cafv2 45916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-un 3954  df-if 4530  df-fv 6552  df-afv2 45917
This theorem is referenced by:  afv2rnfveq  45970  afv20fv0  45971  afv2fvn0fveq  45972
  Copyright terms: Public domain W3C validator