Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2ndeffv0 Structured version   Visualization version   GIF version

Theorem afv2ndeffv0 47290
Description: If the alternate function value at an argument is undefined, i.e., not in the range of the function, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
afv2ndeffv0 ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹𝐴) = ∅)

Proof of Theorem afv2ndeffv0
StepHypRef Expression
1 df-nel 3033 . . 3 ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹)
2 dfatafv2rnb 47257 . . . . 5 (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)
3 df-dfat 47149 . . . . 5 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
42, 3bitr3i 277 . . . 4 ((𝐹''''𝐴) ∈ ran 𝐹 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
54notbii 320 . . 3 (¬ (𝐹''''𝐴) ∈ ran 𝐹 ↔ ¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
6 ianor 983 . . 3 (¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})))
71, 5, 63bitri 297 . 2 ((𝐹''''𝐴) ∉ ran 𝐹 ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})))
8 ndmfv 6854 . . 3 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
9 nfunsn 6861 . . 3 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)
108, 9jaoi 857 . 2 ((¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})) → (𝐹𝐴) = ∅)
117, 10sylbi 217 1 ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wnel 3032  c0 4283  {csn 4576  dom cdm 5616  ran crn 5617  cres 5618  Fun wfun 6475  cfv 6481   defAt wdfat 47146  ''''cafv2 47238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-iota 6437  df-fun 6483  df-fv 6489  df-dfat 47149  df-afv2 47239
This theorem is referenced by:  afv2fv0b  47296
  Copyright terms: Public domain W3C validator