Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2ndeffv0 Structured version   Visualization version   GIF version

Theorem afv2ndeffv0 46702
Description: If the alternate function value at an argument is undefined, i.e., not in the range of the function, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
afv2ndeffv0 ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹𝐴) = ∅)

Proof of Theorem afv2ndeffv0
StepHypRef Expression
1 df-nel 3037 . . 3 ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹)
2 dfatafv2rnb 46669 . . . . 5 (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)
3 df-dfat 46561 . . . . 5 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
42, 3bitr3i 276 . . . 4 ((𝐹''''𝐴) ∈ ran 𝐹 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
54notbii 319 . . 3 (¬ (𝐹''''𝐴) ∈ ran 𝐹 ↔ ¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
6 ianor 979 . . 3 (¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})))
71, 5, 63bitri 296 . 2 ((𝐹''''𝐴) ∉ ran 𝐹 ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})))
8 ndmfv 6926 . . 3 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
9 nfunsn 6933 . . 3 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)
108, 9jaoi 855 . 2 ((¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})) → (𝐹𝐴) = ∅)
117, 10sylbi 216 1 ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845   = wceq 1533  wcel 2098  wnel 3036  c0 4318  {csn 4624  dom cdm 5672  ran crn 5673  cres 5674  Fun wfun 6536  cfv 6542   defAt wdfat 46558  ''''cafv2 46650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-iota 6494  df-fun 6544  df-fv 6550  df-dfat 46561  df-afv2 46651
This theorem is referenced by:  afv2fv0b  46708
  Copyright terms: Public domain W3C validator