| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2ndeffv0 | Structured version Visualization version GIF version | ||
| Description: If the alternate function value at an argument is undefined, i.e., not in the range of the function, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022.) |
| Ref | Expression |
|---|---|
| afv2ndeffv0 | ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3030 | . . 3 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹) | |
| 2 | dfatafv2rnb 47212 | . . . . 5 ⊢ (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹) | |
| 3 | df-dfat 47104 | . . . . 5 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 4 | 2, 3 | bitr3i 277 | . . . 4 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| 5 | 4 | notbii 320 | . . 3 ⊢ (¬ (𝐹''''𝐴) ∈ ran 𝐹 ↔ ¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| 6 | ianor 983 | . . 3 ⊢ (¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴}))) | |
| 7 | 1, 5, 6 | 3bitri 297 | . 2 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴}))) |
| 8 | ndmfv 6859 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 9 | nfunsn 6866 | . . 3 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) | |
| 10 | 8, 9 | jaoi 857 | . 2 ⊢ ((¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})) → (𝐹‘𝐴) = ∅) |
| 11 | 7, 10 | sylbi 217 | 1 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ∅c0 4286 {csn 4579 dom cdm 5623 ran crn 5624 ↾ cres 5625 Fun wfun 6480 ‘cfv 6486 defAt wdfat 47101 ''''cafv2 47193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-iota 6442 df-fun 6488 df-fv 6494 df-dfat 47104 df-afv2 47194 |
| This theorem is referenced by: afv2fv0b 47251 |
| Copyright terms: Public domain | W3C validator |