![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdm3 | Structured version Visualization version GIF version |
Description: Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
Ref | Expression |
---|---|
dfdm3 | ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dm 5685 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
2 | df-br 5148 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴) | |
3 | 2 | exbii 1850 | . . 3 ⊢ (∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
4 | 3 | abbii 2802 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = {𝑥 ∣ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴} |
5 | 1, 4 | eqtri 2760 | 1 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 ⟨cop 4633 class class class wbr 5147 dom cdm 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-br 5148 df-dm 5685 |
This theorem is referenced by: csbdm 5895 cnextf 23561 dmrab 31724 |
Copyright terms: Public domain | W3C validator |