MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdm3 Structured version   Visualization version   GIF version

Theorem dfdm3 5796
Description: Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm3 dom 𝐴 = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfdm3
StepHypRef Expression
1 df-dm 5599 . 2 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
2 df-br 5075 . . . 4 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
32exbii 1850 . . 3 (∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
43abbii 2808 . 2 {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴}
51, 4eqtri 2766 1 dom 𝐴 = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wex 1782  wcel 2106  {cab 2715  cop 4567   class class class wbr 5074  dom cdm 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-br 5075  df-dm 5599
This theorem is referenced by:  csbdm  5806  cnextf  23217  dmrab  30844
  Copyright terms: Public domain W3C validator