![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdm3 | Structured version Visualization version GIF version |
Description: Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
Ref | Expression |
---|---|
dfdm3 | ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dm 5367 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
2 | df-br 4889 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
3 | 2 | exbii 1892 | . . 3 ⊢ (∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
4 | 3 | abbii 2908 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴} |
5 | 1, 4 | eqtri 2802 | 1 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∃wex 1823 ∈ wcel 2107 {cab 2763 〈cop 4404 class class class wbr 4888 dom cdm 5357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-tru 1605 df-ex 1824 df-sb 2012 df-clab 2764 df-cleq 2770 df-br 4889 df-dm 5367 |
This theorem is referenced by: csbdm 5565 cnextf 22289 |
Copyright terms: Public domain | W3C validator |