MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdm3 Structured version   Visualization version   GIF version

Theorem dfdm3 5557
Description: Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm3 dom 𝐴 = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfdm3
StepHypRef Expression
1 df-dm 5367 . 2 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
2 df-br 4889 . . . 4 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
32exbii 1892 . . 3 (∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
43abbii 2908 . 2 {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴}
51, 4eqtri 2802 1 dom 𝐴 = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  wex 1823  wcel 2107  {cab 2763  cop 4404   class class class wbr 4888  dom cdm 5357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-tru 1605  df-ex 1824  df-sb 2012  df-clab 2764  df-cleq 2770  df-br 4889  df-dm 5367
This theorem is referenced by:  csbdm  5565  cnextf  22289
  Copyright terms: Public domain W3C validator