![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbdm | Structured version Visualization version GIF version |
Description: Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017.) (Revised by NM, 24-Aug-2018.) |
Ref | Expression |
---|---|
csbdm | ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbab 4433 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} | |
2 | sbcex2 3838 | . . . . 5 ⊢ ([𝐴 / 𝑥]∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]⟨𝑦, 𝑤⟩ ∈ 𝐵) | |
3 | sbcel2 4411 | . . . . . 6 ⊢ ([𝐴 / 𝑥]⟨𝑦, 𝑤⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵) | |
4 | 3 | exbii 1843 | . . . . 5 ⊢ (∃𝑤[𝐴 / 𝑥]⟨𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵) |
5 | 2, 4 | bitri 275 | . . . 4 ⊢ ([𝐴 / 𝑥]∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵) |
6 | 5 | abbii 2797 | . . 3 ⊢ {𝑦 ∣ [𝐴 / 𝑥]∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵} |
7 | 1, 6 | eqtri 2755 | . 2 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵} |
8 | dfdm3 5884 | . . 3 ⊢ dom 𝐵 = {𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} | |
9 | 8 | csbeq2i 3897 | . 2 ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} |
10 | dfdm3 5884 | . 2 ⊢ dom ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵} | |
11 | 7, 9, 10 | 3eqtr4i 2765 | 1 ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∃wex 1774 ∈ wcel 2099 {cab 2704 [wsbc 3774 ⦋csb 3889 ⟨cop 4630 dom cdm 5672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-nul 4319 df-br 5143 df-dm 5682 |
This theorem is referenced by: sbcfng 6713 |
Copyright terms: Public domain | W3C validator |