![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbdm | Structured version Visualization version GIF version |
Description: Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017.) (Revised by NM, 24-Aug-2018.) |
Ref | Expression |
---|---|
csbdm | ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbab 4398 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} | |
2 | sbcex2 3805 | . . . . 5 ⊢ ([𝐴 / 𝑥]∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]⟨𝑦, 𝑤⟩ ∈ 𝐵) | |
3 | sbcel2 4376 | . . . . . 6 ⊢ ([𝐴 / 𝑥]⟨𝑦, 𝑤⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵) | |
4 | 3 | exbii 1851 | . . . . 5 ⊢ (∃𝑤[𝐴 / 𝑥]⟨𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵) |
5 | 2, 4 | bitri 275 | . . . 4 ⊢ ([𝐴 / 𝑥]∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵) |
6 | 5 | abbii 2803 | . . 3 ⊢ {𝑦 ∣ [𝐴 / 𝑥]∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵} |
7 | 1, 6 | eqtri 2761 | . 2 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵} |
8 | dfdm3 5844 | . . 3 ⊢ dom 𝐵 = {𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} | |
9 | 8 | csbeq2i 3864 | . 2 ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} |
10 | dfdm3 5844 | . 2 ⊢ dom ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵} | |
11 | 7, 9, 10 | 3eqtr4i 2771 | 1 ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 [wsbc 3740 ⦋csb 3856 ⟨cop 4593 dom cdm 5634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-nul 4284 df-br 5107 df-dm 5644 |
This theorem is referenced by: sbcfng 6666 |
Copyright terms: Public domain | W3C validator |