Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbdm | Structured version Visualization version GIF version |
Description: Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017.) (Revised by NM, 24-Aug-2018.) |
Ref | Expression |
---|---|
csbdm | ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbab 4371 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} | |
2 | sbcex2 3781 | . . . . 5 ⊢ ([𝐴 / 𝑥]∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]〈𝑦, 𝑤〉 ∈ 𝐵) | |
3 | sbcel2 4349 | . . . . . 6 ⊢ ([𝐴 / 𝑥]〈𝑦, 𝑤〉 ∈ 𝐵 ↔ 〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) | |
4 | 3 | exbii 1850 | . . . . 5 ⊢ (∃𝑤[𝐴 / 𝑥]〈𝑦, 𝑤〉 ∈ 𝐵 ↔ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) |
5 | 2, 4 | bitri 274 | . . . 4 ⊢ ([𝐴 / 𝑥]∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵 ↔ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) |
6 | 5 | abbii 2808 | . . 3 ⊢ {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} |
7 | 1, 6 | eqtri 2766 | . 2 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} |
8 | dfdm3 5796 | . . 3 ⊢ dom 𝐵 = {𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} | |
9 | 8 | csbeq2i 3840 | . 2 ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ 𝐵} |
10 | dfdm3 5796 | . 2 ⊢ dom ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤〈𝑦, 𝑤〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} | |
11 | 7, 9, 10 | 3eqtr4i 2776 | 1 ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 [wsbc 3716 ⦋csb 3832 〈cop 4567 dom cdm 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-nul 4257 df-br 5075 df-dm 5599 |
This theorem is referenced by: sbcfng 6597 |
Copyright terms: Public domain | W3C validator |