![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbdm | Structured version Visualization version GIF version |
Description: Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017.) (Revised by NM, 24-Aug-2018.) |
Ref | Expression |
---|---|
csbdm | ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbab 4438 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} | |
2 | sbcex2 3839 | . . . . 5 ⊢ ([𝐴 / 𝑥]∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]⟨𝑦, 𝑤⟩ ∈ 𝐵) | |
3 | sbcel2 4416 | . . . . . 6 ⊢ ([𝐴 / 𝑥]⟨𝑦, 𝑤⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵) | |
4 | 3 | exbii 1842 | . . . . 5 ⊢ (∃𝑤[𝐴 / 𝑥]⟨𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵) |
5 | 2, 4 | bitri 274 | . . . 4 ⊢ ([𝐴 / 𝑥]∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵) |
6 | 5 | abbii 2795 | . . 3 ⊢ {𝑦 ∣ [𝐴 / 𝑥]∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵} |
7 | 1, 6 | eqtri 2753 | . 2 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵} |
8 | dfdm3 5889 | . . 3 ⊢ dom 𝐵 = {𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} | |
9 | 8 | csbeq2i 3898 | . 2 ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ 𝐵} |
10 | dfdm3 5889 | . 2 ⊢ dom ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤⟨𝑦, 𝑤⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵} | |
11 | 7, 9, 10 | 3eqtr4i 2763 | 1 ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2702 [wsbc 3774 ⦋csb 3890 ⟨cop 4635 dom cdm 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-nul 4324 df-br 5149 df-dm 5687 |
This theorem is referenced by: sbcfng 6718 |
Copyright terms: Public domain | W3C validator |