MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbdm Structured version   Visualization version   GIF version

Theorem csbdm 5837
Description: Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017.) (Revised by NM, 24-Aug-2018.)
Assertion
Ref Expression
csbdm 𝐴 / 𝑥dom 𝐵 = dom 𝐴 / 𝑥𝐵

Proof of Theorem csbdm
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbab 4390 . . 3 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵}
2 sbcex2 3802 . . . . 5 ([𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]𝑦, 𝑤⟩ ∈ 𝐵)
3 sbcel2 4368 . . . . . 6 ([𝐴 / 𝑥]𝑦, 𝑤⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵)
43exbii 1849 . . . . 5 (∃𝑤[𝐴 / 𝑥]𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵)
52, 4bitri 275 . . . 4 ([𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵)
65abbii 2798 . . 3 {𝑦[𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵}
71, 6eqtri 2754 . 2 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵}
8 dfdm3 5827 . . 3 dom 𝐵 = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵}
98csbeq2i 3858 . 2 𝐴 / 𝑥dom 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵}
10 dfdm3 5827 . 2 dom 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵}
117, 9, 103eqtr4i 2764 1 𝐴 / 𝑥dom 𝐵 = dom 𝐴 / 𝑥𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wex 1780  wcel 2111  {cab 2709  [wsbc 3741  csb 3850  cop 4582  dom cdm 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-nul 4284  df-br 5092  df-dm 5626
This theorem is referenced by:  sbcfng  6648
  Copyright terms: Public domain W3C validator