MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbdm Structured version   Visualization version   GIF version

Theorem csbdm 5899
Description: Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017.) (Revised by NM, 24-Aug-2018.)
Assertion
Ref Expression
csbdm 𝐴 / 𝑥dom 𝐵 = dom 𝐴 / 𝑥𝐵

Proof of Theorem csbdm
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbab 4438 . . 3 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵}
2 sbcex2 3839 . . . . 5 ([𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]𝑦, 𝑤⟩ ∈ 𝐵)
3 sbcel2 4416 . . . . . 6 ([𝐴 / 𝑥]𝑦, 𝑤⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵)
43exbii 1842 . . . . 5 (∃𝑤[𝐴 / 𝑥]𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵)
52, 4bitri 274 . . . 4 ([𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵 ↔ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵)
65abbii 2795 . . 3 {𝑦[𝐴 / 𝑥]𝑤𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵}
71, 6eqtri 2753 . 2 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵}
8 dfdm3 5889 . . 3 dom 𝐵 = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵}
98csbeq2i 3898 . 2 𝐴 / 𝑥dom 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐵}
10 dfdm3 5889 . 2 dom 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑦, 𝑤⟩ ∈ 𝐴 / 𝑥𝐵}
117, 9, 103eqtr4i 2763 1 𝐴 / 𝑥dom 𝐵 = dom 𝐴 / 𝑥𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wex 1773  wcel 2098  {cab 2702  [wsbc 3774  csb 3890  cop 4635  dom cdm 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-nul 4324  df-br 5149  df-dm 5687
This theorem is referenced by:  sbcfng  6718
  Copyright terms: Public domain W3C validator