MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvuni Structured version   Visualization version   GIF version

Theorem cnvuni 5853
Description: The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
cnvuni 𝐴 = 𝑥𝐴 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnvuni
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcnv2 5844 . . . 4 (𝑦 𝐴 ↔ ∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝐴))
2 eluni2 4878 . . . . . . 7 (⟨𝑤, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑥𝐴𝑤, 𝑧⟩ ∈ 𝑥)
32anbi2i 623 . . . . . 6 ((𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝐴) ↔ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ∃𝑥𝐴𝑤, 𝑧⟩ ∈ 𝑥))
4 r19.42v 3170 . . . . . 6 (∃𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ∃𝑥𝐴𝑤, 𝑧⟩ ∈ 𝑥))
53, 4bitr4i 278 . . . . 5 ((𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝐴) ↔ ∃𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
652exbii 1849 . . . 4 (∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝐴) ↔ ∃𝑧𝑤𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
7 elcnv2 5844 . . . . . 6 (𝑦𝑥 ↔ ∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
87rexbii 3077 . . . . 5 (∃𝑥𝐴 𝑦𝑥 ↔ ∃𝑥𝐴𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
9 rexcom4 3265 . . . . 5 (∃𝑥𝐴𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ ∃𝑧𝑥𝐴𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
10 rexcom4 3265 . . . . . 6 (∃𝑥𝐴𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ ∃𝑤𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
1110exbii 1848 . . . . 5 (∃𝑧𝑥𝐴𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ ∃𝑧𝑤𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥))
128, 9, 113bitrri 298 . . . 4 (∃𝑧𝑤𝑥𝐴 (𝑦 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑤, 𝑧⟩ ∈ 𝑥) ↔ ∃𝑥𝐴 𝑦𝑥)
131, 6, 123bitri 297 . . 3 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
14 eliun 4962 . . 3 (𝑦 𝑥𝐴 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
1513, 14bitr4i 278 . 2 (𝑦 𝐴𝑦 𝑥𝐴 𝑥)
1615eqriv 2727 1 𝐴 = 𝑥𝐴 𝑥
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3054  cop 4598   cuni 4874   ciun 4958  ccnv 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3055  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-cnv 5649
This theorem is referenced by:  funcnvuni  7911
  Copyright terms: Public domain W3C validator