MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextf Structured version   Visualization version   GIF version

Theorem cnextf 24095
Description: Extension by continuity. The extension by continuity is a function. (Contributed by Thierry Arnoux, 25-Dec-2017.)
Hypotheses
Ref Expression
cnextf.1 𝐶 = 𝐽
cnextf.2 𝐵 = 𝐾
cnextf.3 (𝜑𝐽 ∈ Top)
cnextf.4 (𝜑𝐾 ∈ Haus)
cnextf.5 (𝜑𝐹:𝐴𝐵)
cnextf.a (𝜑𝐴𝐶)
cnextf.6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
cnextf.7 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
Assertion
Ref Expression
cnextf (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥

Proof of Theorem cnextf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnextf.3 . . . 4 (𝜑𝐽 ∈ Top)
2 cnextf.4 . . . 4 (𝜑𝐾 ∈ Haus)
3 cnextf.5 . . . 4 (𝜑𝐹:𝐴𝐵)
4 cnextf.a . . . 4 (𝜑𝐴𝐶)
5 cnextf.1 . . . . 5 𝐶 = 𝐽
6 cnextf.2 . . . . 5 𝐵 = 𝐾
75, 6cnextfun 24093 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
81, 2, 3, 4, 7syl22anc 838 . . 3 (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹))
9 dfdm3 5912 . . . 4 dom ((𝐽CnExt𝐾)‘𝐹) = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)}
10 simpl 482 . . . . . . 7 ((𝜑𝑥𝐶) → 𝜑)
11 cnextf.6 . . . . . . . . 9 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
1211eleq2d 2830 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥𝐶))
1312biimpar 477 . . . . . . 7 ((𝜑𝑥𝐶) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
14 cnextf.7 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
15 n0 4376 . . . . . . . 8 (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
1614, 15sylib 218 . . . . . . 7 ((𝜑𝑥𝐶) → ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
17 haustop 23360 . . . . . . . . . . . . . 14 (𝐾 ∈ Haus → 𝐾 ∈ Top)
182, 17syl 17 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Top)
195, 6cnextfval 24091 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
201, 18, 3, 4, 19syl22anc 838 . . . . . . . . . . . 12 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2120eleq2d 2830 . . . . . . . . . . 11 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
22 opeliunxp 5767 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2321, 22bitrdi 287 . . . . . . . . . 10 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
2423exbidv 1920 . . . . . . . . 9 (𝜑 → (∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ∃𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
25 19.42v 1953 . . . . . . . . 9 (∃𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2624, 25bitrdi 287 . . . . . . . 8 (𝜑 → (∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
2726biimpar 477 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) → ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
2810, 13, 16, 27syl12anc 836 . . . . . 6 ((𝜑𝑥𝐶) → ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
2926simprbda 498 . . . . . . 7 ((𝜑 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
3012adantr 480 . . . . . . 7 ((𝜑 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥𝐶))
3129, 30mpbid 232 . . . . . 6 ((𝜑 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)) → 𝑥𝐶)
3228, 31impbida 800 . . . . 5 (𝜑 → (𝑥𝐶 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)))
3332eqabdv 2878 . . . 4 (𝜑𝐶 = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)})
349, 33eqtr4id 2799 . . 3 (𝜑 → dom ((𝐽CnExt𝐾)‘𝐹) = 𝐶)
35 df-fn 6576 . . 3 (((𝐽CnExt𝐾)‘𝐹) Fn 𝐶 ↔ (Fun ((𝐽CnExt𝐾)‘𝐹) ∧ dom ((𝐽CnExt𝐾)‘𝐹) = 𝐶))
368, 34, 35sylanbrc 582 . 2 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) Fn 𝐶)
3720rneqd 5963 . . 3 (𝜑 → ran ((𝐽CnExt𝐾)‘𝐹) = ran 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
38 rniun 6179 . . . 4 ran 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
39 vex 3492 . . . . . . . . 9 𝑥 ∈ V
4039snnz 4801 . . . . . . . 8 {𝑥} ≠ ∅
41 rnxp 6201 . . . . . . . 8 ({𝑥} ≠ ∅ → ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
4240, 41ax-mp 5 . . . . . . 7 ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)
4312biimpa 476 . . . . . . . 8 ((𝜑𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝑥𝐶)
446toptopon 22944 . . . . . . . . . . 11 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵))
4518, 44sylib 218 . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝐵))
4645adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐶) → 𝐾 ∈ (TopOn‘𝐵))
475toptopon 22944 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
481, 47sylib 218 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝐶))
4948adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐽 ∈ (TopOn‘𝐶))
504adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐴𝐶)
51 simpr 484 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝑥𝐶)
52 trnei 23921 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
5352biimpa 476 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
5449, 50, 51, 13, 53syl31anc 1373 . . . . . . . . 9 ((𝜑𝑥𝐶) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
553adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐶) → 𝐹:𝐴𝐵)
56 flfelbas 24023 . . . . . . . . . . 11 (((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) → 𝑦𝐵)
5756ex 412 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → (𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) → 𝑦𝐵))
5857ssrdv 4014 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵)
5946, 54, 55, 58syl3anc 1371 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵)
6043, 59syldan 590 . . . . . . 7 ((𝜑𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵)
6142, 60eqsstrid 4057 . . . . . 6 ((𝜑𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
6261ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
63 iunss 5068 . . . . 5 ( 𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵 ↔ ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
6462, 63sylibr 234 . . . 4 (𝜑 𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
6538, 64eqsstrid 4057 . . 3 (𝜑 → ran 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
6637, 65eqsstrd 4047 . 2 (𝜑 → ran ((𝐽CnExt𝐾)‘𝐹) ⊆ 𝐵)
67 df-f 6577 . 2 (((𝐽CnExt𝐾)‘𝐹):𝐶𝐵 ↔ (((𝐽CnExt𝐾)‘𝐹) Fn 𝐶 ∧ ran ((𝐽CnExt𝐾)‘𝐹) ⊆ 𝐵))
6836, 66, 67sylanbrc 582 1 (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wral 3067  wss 3976  c0 4352  {csn 4648  cop 4654   cuni 4931   ciun 5015   × cxp 5698  dom cdm 5700  ran crn 5701  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  t crest 17480  Topctop 22920  TopOnctopon 22937  clsccl 23047  neicnei 23126  Hauscha 23337  Filcfil 23874   fLimf cflf 23964  CnExtccnext 24088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-pm 8887  df-rest 17482  df-fbas 21384  df-fg 21385  df-top 22921  df-topon 22938  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-haus 23344  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-cnext 24089
This theorem is referenced by:  cnextcn  24096  cnextfres1  24097
  Copyright terms: Public domain W3C validator