MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextf Structured version   Visualization version   GIF version

Theorem cnextf 22362
Description: Extension by continuity. The extension by continuity is a function. (Contributed by Thierry Arnoux, 25-Dec-2017.)
Hypotheses
Ref Expression
cnextf.1 𝐶 = 𝐽
cnextf.2 𝐵 = 𝐾
cnextf.3 (𝜑𝐽 ∈ Top)
cnextf.4 (𝜑𝐾 ∈ Haus)
cnextf.5 (𝜑𝐹:𝐴𝐵)
cnextf.a (𝜑𝐴𝐶)
cnextf.6 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
cnextf.7 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
Assertion
Ref Expression
cnextf (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥

Proof of Theorem cnextf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnextf.3 . . . 4 (𝜑𝐽 ∈ Top)
2 cnextf.4 . . . 4 (𝜑𝐾 ∈ Haus)
3 cnextf.5 . . . 4 (𝜑𝐹:𝐴𝐵)
4 cnextf.a . . . 4 (𝜑𝐴𝐶)
5 cnextf.1 . . . . 5 𝐶 = 𝐽
6 cnextf.2 . . . . 5 𝐵 = 𝐾
75, 6cnextfun 22360 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
81, 2, 3, 4, 7syl22anc 835 . . 3 (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹))
9 simpl 483 . . . . . . 7 ((𝜑𝑥𝐶) → 𝜑)
10 cnextf.6 . . . . . . . . 9 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶)
1110eleq2d 2870 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥𝐶))
1211biimpar 478 . . . . . . 7 ((𝜑𝑥𝐶) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
13 cnextf.7 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅)
14 n0 4236 . . . . . . . 8 (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
1513, 14sylib 219 . . . . . . 7 ((𝜑𝑥𝐶) → ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
16 haustop 21627 . . . . . . . . . . . . . 14 (𝐾 ∈ Haus → 𝐾 ∈ Top)
172, 16syl 17 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ Top)
185, 6cnextfval 22358 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
191, 17, 3, 4, 18syl22anc 835 . . . . . . . . . . . 12 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2019eleq2d 2870 . . . . . . . . . . 11 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
21 opeliunxp 5512 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2220, 21syl6bb 288 . . . . . . . . . 10 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
2322exbidv 1903 . . . . . . . . 9 (𝜑 → (∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ∃𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
24 19.42v 1935 . . . . . . . . 9 (∃𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2523, 24syl6bb 288 . . . . . . . 8 (𝜑 → (∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
2625biimpar 478 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) → ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
279, 12, 15, 26syl12anc 833 . . . . . 6 ((𝜑𝑥𝐶) → ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
2825simprbda 499 . . . . . . 7 ((𝜑 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
2911adantr 481 . . . . . . 7 ((𝜑 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥𝐶))
3028, 29mpbid 233 . . . . . 6 ((𝜑 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)) → 𝑥𝐶)
3127, 30impbida 797 . . . . 5 (𝜑 → (𝑥𝐶 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)))
3231abbi2dv 2921 . . . 4 (𝜑𝐶 = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)})
33 dfdm3 5651 . . . 4 dom ((𝐽CnExt𝐾)‘𝐹) = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)}
3432, 33syl6reqr 2852 . . 3 (𝜑 → dom ((𝐽CnExt𝐾)‘𝐹) = 𝐶)
35 df-fn 6235 . . 3 (((𝐽CnExt𝐾)‘𝐹) Fn 𝐶 ↔ (Fun ((𝐽CnExt𝐾)‘𝐹) ∧ dom ((𝐽CnExt𝐾)‘𝐹) = 𝐶))
368, 34, 35sylanbrc 583 . 2 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) Fn 𝐶)
3719rneqd 5697 . . 3 (𝜑 → ran ((𝐽CnExt𝐾)‘𝐹) = ran 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
38 rniun 5889 . . . 4 ran 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
39 vex 3443 . . . . . . . . 9 𝑥 ∈ V
4039snnz 4624 . . . . . . . 8 {𝑥} ≠ ∅
41 rnxp 5910 . . . . . . . 8 ({𝑥} ≠ ∅ → ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
4240, 41ax-mp 5 . . . . . . 7 ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)
4311biimpa 477 . . . . . . . 8 ((𝜑𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝑥𝐶)
446toptopon 21213 . . . . . . . . . . 11 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵))
4517, 44sylib 219 . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝐵))
4645adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐶) → 𝐾 ∈ (TopOn‘𝐵))
475toptopon 21213 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
481, 47sylib 219 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝐶))
4948adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐽 ∈ (TopOn‘𝐶))
504adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐴𝐶)
51 simpr 485 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝑥𝐶)
52 trnei 22188 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
5352biimpa 477 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
5449, 50, 51, 12, 53syl31anc 1366 . . . . . . . . 9 ((𝜑𝑥𝐶) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
553adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐶) → 𝐹:𝐴𝐵)
56 flfelbas 22290 . . . . . . . . . . 11 (((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) → 𝑦𝐵)
5756ex 413 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → (𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) → 𝑦𝐵))
5857ssrdv 3901 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵)
5946, 54, 55, 58syl3anc 1364 . . . . . . . 8 ((𝜑𝑥𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵)
6043, 59syldan 591 . . . . . . 7 ((𝜑𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵)
6142, 60eqsstrid 3942 . . . . . 6 ((𝜑𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
6261ralrimiva 3151 . . . . 5 (𝜑 → ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
63 iunss 4874 . . . . 5 ( 𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵 ↔ ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
6462, 63sylibr 235 . . . 4 (𝜑 𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
6538, 64eqsstrid 3942 . . 3 (𝜑 → ran 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵)
6637, 65eqsstrd 3932 . 2 (𝜑 → ran ((𝐽CnExt𝐾)‘𝐹) ⊆ 𝐵)
67 df-f 6236 . 2 (((𝐽CnExt𝐾)‘𝐹):𝐶𝐵 ↔ (((𝐽CnExt𝐾)‘𝐹) Fn 𝐶 ∧ ran ((𝐽CnExt𝐾)‘𝐹) ⊆ 𝐵))
6836, 66, 67sylanbrc 583 1 (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wex 1765  wcel 2083  {cab 2777  wne 2986  wral 3107  wss 3865  c0 4217  {csn 4478  cop 4484   cuni 4751   ciun 4831   × cxp 5448  dom cdm 5450  ran crn 5451  Fun wfun 6226   Fn wfn 6227  wf 6228  cfv 6232  (class class class)co 7023  t crest 16527  Topctop 21189  TopOnctopon 21206  clsccl 21314  neicnei 21393  Hauscha 21604  Filcfil 22141   fLimf cflf 22231  CnExtccnext 22355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-1st 7552  df-2nd 7553  df-map 8265  df-pm 8266  df-rest 16529  df-fbas 20228  df-fg 20229  df-top 21190  df-topon 21207  df-cld 21315  df-ntr 21316  df-cls 21317  df-nei 21394  df-haus 21611  df-fil 22142  df-fm 22234  df-flim 22235  df-flf 22236  df-cnext 22356
This theorem is referenced by:  cnextcn  22363  cnextfres1  22364
  Copyright terms: Public domain W3C validator