| Step | Hyp | Ref
| Expression |
| 1 | | cnextf.3 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ Top) |
| 2 | | cnextf.4 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ Haus) |
| 3 | | cnextf.5 |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 4 | | cnextf.a |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| 5 | | cnextf.1 |
. . . . 5
⊢ 𝐶 = ∪
𝐽 |
| 6 | | cnextf.2 |
. . . . 5
⊢ 𝐵 = ∪
𝐾 |
| 7 | 5, 6 | cnextfun 24007 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹)) |
| 8 | 1, 2, 3, 4, 7 | syl22anc 838 |
. . 3
⊢ (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹)) |
| 9 | | dfdm3 5872 |
. . . 4
⊢ dom
((𝐽CnExt𝐾)‘𝐹) = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹)} |
| 10 | | simpl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝜑) |
| 11 | | cnextf.6 |
. . . . . . . . 9
⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶) |
| 12 | 11 | eleq2d 2821 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥 ∈ 𝐶)) |
| 13 | 12 | biimpar 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ((cls‘𝐽)‘𝐴)) |
| 14 | | cnextf.7 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) |
| 15 | | n0 4333 |
. . . . . . . 8
⊢ (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
| 16 | 14, 15 | sylib 218 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
| 17 | | haustop 23274 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ Haus → 𝐾 ∈ Top) |
| 18 | 2, 17 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ Top) |
| 19 | 5, 6 | cnextfval 24005 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = ∪
𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
| 20 | 1, 18, 3, 4, 19 | syl22anc 838 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) = ∪
𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
| 21 | 20 | eleq2d 2821 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ 〈𝑥, 𝑦〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) |
| 22 | | opeliunxp 5726 |
. . . . . . . . . . 11
⊢
(〈𝑥, 𝑦〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
| 23 | 21, 22 | bitrdi 287 |
. . . . . . . . . 10
⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) |
| 24 | 23 | exbidv 1921 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ∃𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) |
| 25 | | 19.42v 1953 |
. . . . . . . . 9
⊢
(∃𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
| 26 | 24, 25 | bitrdi 287 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) |
| 27 | 26 | biimpar 477 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) → ∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) |
| 28 | 10, 13, 16, 27 | syl12anc 836 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) |
| 29 | 26 | simprbda 498 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) → 𝑥 ∈ ((cls‘𝐽)‘𝐴)) |
| 30 | 12 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥 ∈ 𝐶)) |
| 31 | 29, 30 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) → 𝑥 ∈ 𝐶) |
| 32 | 28, 31 | impbida 800 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹))) |
| 33 | 32 | eqabdv 2869 |
. . . 4
⊢ (𝜑 → 𝐶 = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹)}) |
| 34 | 9, 33 | eqtr4id 2790 |
. . 3
⊢ (𝜑 → dom ((𝐽CnExt𝐾)‘𝐹) = 𝐶) |
| 35 | | df-fn 6539 |
. . 3
⊢ (((𝐽CnExt𝐾)‘𝐹) Fn 𝐶 ↔ (Fun ((𝐽CnExt𝐾)‘𝐹) ∧ dom ((𝐽CnExt𝐾)‘𝐹) = 𝐶)) |
| 36 | 8, 34, 35 | sylanbrc 583 |
. 2
⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) Fn 𝐶) |
| 37 | 20 | rneqd 5923 |
. . 3
⊢ (𝜑 → ran ((𝐽CnExt𝐾)‘𝐹) = ran ∪
𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
| 38 | | rniun 6141 |
. . . 4
⊢ ran
∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = ∪
𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
| 39 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 40 | 39 | snnz 4757 |
. . . . . . . 8
⊢ {𝑥} ≠ ∅ |
| 41 | | rnxp 6164 |
. . . . . . . 8
⊢ ({𝑥} ≠ ∅ → ran
({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
| 42 | 40, 41 | ax-mp 5 |
. . . . . . 7
⊢ ran
({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) |
| 43 | 12 | biimpa 476 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝑥 ∈ 𝐶) |
| 44 | 6 | toptopon 22860 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵)) |
| 45 | 18, 44 | sylib 218 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝐵)) |
| 46 | 45 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐾 ∈ (TopOn‘𝐵)) |
| 47 | 5 | toptopon 22860 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶)) |
| 48 | 1, 47 | sylib 218 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐶)) |
| 49 | 48 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐽 ∈ (TopOn‘𝐶)) |
| 50 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐴 ⊆ 𝐶) |
| 51 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) |
| 52 | | trnei 23835 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
| 53 | 52 | biimpa 476 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐶) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)) |
| 54 | 49, 50, 51, 13, 53 | syl31anc 1375 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)) |
| 55 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐹:𝐴⟶𝐵) |
| 56 | | flfelbas 23937 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) → 𝑦 ∈ 𝐵) |
| 57 | 56 | ex 412 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴⟶𝐵) → (𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) → 𝑦 ∈ 𝐵)) |
| 58 | 57 | ssrdv 3969 |
. . . . . . . . 9
⊢ ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴⟶𝐵) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵) |
| 59 | 46, 54, 55, 58 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵) |
| 60 | 43, 59 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵) |
| 61 | 42, 60 | eqsstrid 4002 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵) |
| 62 | 61 | ralrimiva 3133 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵) |
| 63 | | iunss 5026 |
. . . . 5
⊢ (∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵 ↔ ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵) |
| 64 | 62, 63 | sylibr 234 |
. . . 4
⊢ (𝜑 → ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵) |
| 65 | 38, 64 | eqsstrid 4002 |
. . 3
⊢ (𝜑 → ran ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵) |
| 66 | 37, 65 | eqsstrd 3998 |
. 2
⊢ (𝜑 → ran ((𝐽CnExt𝐾)‘𝐹) ⊆ 𝐵) |
| 67 | | df-f 6540 |
. 2
⊢ (((𝐽CnExt𝐾)‘𝐹):𝐶⟶𝐵 ↔ (((𝐽CnExt𝐾)‘𝐹) Fn 𝐶 ∧ ran ((𝐽CnExt𝐾)‘𝐹) ⊆ 𝐵)) |
| 68 | 36, 66, 67 | sylanbrc 583 |
1
⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶⟶𝐵) |