Step | Hyp | Ref
| Expression |
1 | | cnextf.3 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ Top) |
2 | | cnextf.4 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ Haus) |
3 | | cnextf.5 |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
4 | | cnextf.a |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
5 | | cnextf.1 |
. . . . 5
⊢ 𝐶 = ∪
𝐽 |
6 | | cnextf.2 |
. . . . 5
⊢ 𝐵 = ∪
𝐾 |
7 | 5, 6 | cnextfun 23215 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹)) |
8 | 1, 2, 3, 4, 7 | syl22anc 836 |
. . 3
⊢ (𝜑 → Fun ((𝐽CnExt𝐾)‘𝐹)) |
9 | | dfdm3 5796 |
. . . 4
⊢ dom
((𝐽CnExt𝐾)‘𝐹) = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹)} |
10 | | simpl 483 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝜑) |
11 | | cnextf.6 |
. . . . . . . . 9
⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝐶) |
12 | 11 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥 ∈ 𝐶)) |
13 | 12 | biimpar 478 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ((cls‘𝐽)‘𝐴)) |
14 | | cnextf.7 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅) |
15 | | n0 4280 |
. . . . . . . 8
⊢ (((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
16 | 14, 15 | sylib 217 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
17 | | haustop 22482 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ Haus → 𝐾 ∈ Top) |
18 | 2, 17 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ Top) |
19 | 5, 6 | cnextfval 23213 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = ∪
𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
20 | 1, 18, 3, 4, 19 | syl22anc 836 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) = ∪
𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
21 | 20 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ 〈𝑥, 𝑦〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) |
22 | | opeliunxp 5654 |
. . . . . . . . . . 11
⊢
(〈𝑥, 𝑦〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
23 | 21, 22 | bitrdi 287 |
. . . . . . . . . 10
⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) |
24 | 23 | exbidv 1924 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ∃𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) |
25 | | 19.42v 1957 |
. . . . . . . . 9
⊢
(∃𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
26 | 24, 25 | bitrdi 287 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) |
27 | 26 | biimpar 478 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ ∃𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) → ∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) |
28 | 10, 13, 16, 27 | syl12anc 834 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) |
29 | 26 | simprbda 499 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) → 𝑥 ∈ ((cls‘𝐽)‘𝐴)) |
30 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ 𝑥 ∈ 𝐶)) |
31 | 29, 30 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) → 𝑥 ∈ 𝐶) |
32 | 28, 31 | impbida 798 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹))) |
33 | 32 | abbi2dv 2877 |
. . . 4
⊢ (𝜑 → 𝐶 = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹)}) |
34 | 9, 33 | eqtr4id 2797 |
. . 3
⊢ (𝜑 → dom ((𝐽CnExt𝐾)‘𝐹) = 𝐶) |
35 | | df-fn 6436 |
. . 3
⊢ (((𝐽CnExt𝐾)‘𝐹) Fn 𝐶 ↔ (Fun ((𝐽CnExt𝐾)‘𝐹) ∧ dom ((𝐽CnExt𝐾)‘𝐹) = 𝐶)) |
36 | 8, 34, 35 | sylanbrc 583 |
. 2
⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) Fn 𝐶) |
37 | 20 | rneqd 5847 |
. . 3
⊢ (𝜑 → ran ((𝐽CnExt𝐾)‘𝐹) = ran ∪
𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
38 | | rniun 6051 |
. . . 4
⊢ ran
∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = ∪
𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
39 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
40 | 39 | snnz 4712 |
. . . . . . . 8
⊢ {𝑥} ≠ ∅ |
41 | | rnxp 6073 |
. . . . . . . 8
⊢ ({𝑥} ≠ ∅ → ran
({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
42 | 40, 41 | ax-mp 5 |
. . . . . . 7
⊢ ran
({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) |
43 | 12 | biimpa 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝑥 ∈ 𝐶) |
44 | 6 | toptopon 22066 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵)) |
45 | 18, 44 | sylib 217 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝐵)) |
46 | 45 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐾 ∈ (TopOn‘𝐵)) |
47 | 5 | toptopon 22066 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶)) |
48 | 1, 47 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐶)) |
49 | 48 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐽 ∈ (TopOn‘𝐶)) |
50 | 4 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐴 ⊆ 𝐶) |
51 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) |
52 | | trnei 23043 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))) |
53 | 52 | biimpa 477 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐶) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)) |
54 | 49, 50, 51, 13, 53 | syl31anc 1372 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)) |
55 | 3 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐹:𝐴⟶𝐵) |
56 | | flfelbas 23145 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) → 𝑦 ∈ 𝐵) |
57 | 56 | ex 413 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴⟶𝐵) → (𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) → 𝑦 ∈ 𝐵)) |
58 | 57 | ssrdv 3927 |
. . . . . . . . 9
⊢ ((𝐾 ∈ (TopOn‘𝐵) ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴⟶𝐵) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵) |
59 | 46, 54, 55, 58 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵) |
60 | 43, 59 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹) ⊆ 𝐵) |
61 | 42, 60 | eqsstrid 3969 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵) |
62 | 61 | ralrimiva 3103 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵) |
63 | | iunss 4975 |
. . . . 5
⊢ (∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵 ↔ ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵) |
64 | 62, 63 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)ran ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵) |
65 | 38, 64 | eqsstrid 3969 |
. . 3
⊢ (𝜑 → ran ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ⊆ 𝐵) |
66 | 37, 65 | eqsstrd 3959 |
. 2
⊢ (𝜑 → ran ((𝐽CnExt𝐾)‘𝐹) ⊆ 𝐵) |
67 | | df-f 6437 |
. 2
⊢ (((𝐽CnExt𝐾)‘𝐹):𝐶⟶𝐵 ↔ (((𝐽CnExt𝐾)‘𝐹) Fn 𝐶 ∧ ran ((𝐽CnExt𝐾)‘𝐹) ⊆ 𝐵)) |
68 | 36, 66, 67 | sylanbrc 583 |
1
⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹):𝐶⟶𝐵) |