MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrn2 Structured version   Visualization version   GIF version

Theorem dfrn2 5828
Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
Assertion
Ref Expression
dfrn2 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfrn2
StepHypRef Expression
1 df-rn 5627 . 2 ran 𝐴 = dom 𝐴
2 df-dm 5626 . 2 dom 𝐴 = {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥}
3 vex 3440 . . . . 5 𝑦 ∈ V
4 vex 3440 . . . . 5 𝑥 ∈ V
53, 4brcnv 5822 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
65exbii 1849 . . 3 (∃𝑥 𝑦𝐴𝑥 ↔ ∃𝑥 𝑥𝐴𝑦)
76abbii 2798 . 2 {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
81, 2, 73eqtri 2758 1 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wex 1780  {cab 2709   class class class wbr 5091  ccnv 5615  dom cdm 5616  ran crn 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-cnv 5624  df-dm 5626  df-rn 5627
This theorem is referenced by:  dfrn3  5829  dfdm4  5835  dm0rn0  5864  dm0rn0OLD  5865  rnep  5867  dfrnf  5890  dfima2  6011  funcnv3  6551  opabrn  32593  rncossdmcoss  38498
  Copyright terms: Public domain W3C validator