MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrn2 Structured version   Visualization version   GIF version

Theorem dfrn2 5879
Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
Assertion
Ref Expression
dfrn2 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfrn2
StepHypRef Expression
1 df-rn 5678 . 2 ran 𝐴 = dom 𝐴
2 df-dm 5677 . 2 dom 𝐴 = {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥}
3 vex 3470 . . . . 5 𝑦 ∈ V
4 vex 3470 . . . . 5 𝑥 ∈ V
53, 4brcnv 5873 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
65exbii 1842 . . 3 (∃𝑥 𝑦𝐴𝑥 ↔ ∃𝑥 𝑥𝐴𝑦)
76abbii 2794 . 2 {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
81, 2, 73eqtri 2756 1 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wex 1773  {cab 2701   class class class wbr 5139  ccnv 5666  dom cdm 5667  ran crn 5668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-cnv 5675  df-dm 5677  df-rn 5678
This theorem is referenced by:  dfrn3  5880  dfdm4  5886  dm0rn0  5915  rnep  5917  dfrnf  5940  dfima2  6052  funcnv3  6609  opabrn  32336  rncossdmcoss  37829
  Copyright terms: Public domain W3C validator