| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrn2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrn2 | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5634 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 2 | df-dm 5633 | . 2 ⊢ dom ◡𝐴 = {𝑦 ∣ ∃𝑥 𝑦◡𝐴𝑥} | |
| 3 | vex 3442 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | vex 3442 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | brcnv 5829 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 6 | 5 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝑦◡𝐴𝑥 ↔ ∃𝑥 𝑥𝐴𝑦) |
| 7 | 6 | abbii 2796 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦◡𝐴𝑥} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| 8 | 1, 2, 7 | 3eqtri 2756 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 {cab 2707 class class class wbr 5095 ◡ccnv 5622 dom cdm 5623 ran crn 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-cnv 5631 df-dm 5633 df-rn 5634 |
| This theorem is referenced by: dfrn3 5836 dfdm4 5842 dm0rn0 5871 rnep 5873 dfrnf 5896 dfima2 6017 funcnv3 6556 opabrn 32573 rncossdmcoss 38434 |
| Copyright terms: Public domain | W3C validator |