![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrn2 | Structured version Visualization version GIF version |
Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.) |
Ref | Expression |
---|---|
dfrn2 | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5685 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | df-dm 5684 | . 2 ⊢ dom ◡𝐴 = {𝑦 ∣ ∃𝑥 𝑦◡𝐴𝑥} | |
3 | vex 3466 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | vex 3466 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | 3, 4 | brcnv 5881 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
6 | 5 | exbii 1843 | . . 3 ⊢ (∃𝑥 𝑦◡𝐴𝑥 ↔ ∃𝑥 𝑥𝐴𝑦) |
7 | 6 | abbii 2796 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦◡𝐴𝑥} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
8 | 1, 2, 7 | 3eqtri 2758 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∃wex 1774 {cab 2703 class class class wbr 5145 ◡ccnv 5673 dom cdm 5674 ran crn 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5146 df-opab 5208 df-cnv 5682 df-dm 5684 df-rn 5685 |
This theorem is referenced by: dfrn3 5888 dfdm4 5894 dm0rn0 5923 rnep 5925 dfrnf 5948 dfima2 6063 funcnv3 6621 opabrn 32532 rncossdmcoss 38166 |
Copyright terms: Public domain | W3C validator |