| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrn2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrn2 | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5632 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 2 | df-dm 5631 | . 2 ⊢ dom ◡𝐴 = {𝑦 ∣ ∃𝑥 𝑦◡𝐴𝑥} | |
| 3 | vex 3441 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | vex 3441 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | brcnv 5828 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 6 | 5 | exbii 1849 | . . 3 ⊢ (∃𝑥 𝑦◡𝐴𝑥 ↔ ∃𝑥 𝑥𝐴𝑦) |
| 7 | 6 | abbii 2800 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦◡𝐴𝑥} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| 8 | 1, 2, 7 | 3eqtri 2760 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 {cab 2711 class class class wbr 5095 ◡ccnv 5620 dom cdm 5621 ran crn 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: dfrn3 5835 dfdm4 5841 dm0rn0 5870 dm0rn0OLD 5871 rnep 5873 dfrnf 5896 dfima2 6017 funcnv3 6558 opabrn 32599 rncossdmcoss 38580 |
| Copyright terms: Public domain | W3C validator |