MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrn2 Structured version   Visualization version   GIF version

Theorem dfrn2 5786
Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
Assertion
Ref Expression
dfrn2 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfrn2
StepHypRef Expression
1 df-rn 5591 . 2 ran 𝐴 = dom 𝐴
2 df-dm 5590 . 2 dom 𝐴 = {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥}
3 vex 3426 . . . . 5 𝑦 ∈ V
4 vex 3426 . . . . 5 𝑥 ∈ V
53, 4brcnv 5780 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
65exbii 1851 . . 3 (∃𝑥 𝑦𝐴𝑥 ↔ ∃𝑥 𝑥𝐴𝑦)
76abbii 2809 . 2 {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
81, 2, 73eqtri 2770 1 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wex 1783  {cab 2715   class class class wbr 5070  ccnv 5579  dom cdm 5580  ran crn 5581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cnv 5588  df-dm 5590  df-rn 5591
This theorem is referenced by:  dfrn3  5787  dfdm4  5793  dm0rn0  5823  rnep  5825  dfrnf  5848  dfima2  5960  funcnv3  6488  opabrn  30853  rncossdmcoss  36500
  Copyright terms: Public domain W3C validator