Home | Metamath
Proof Explorer Theorem List (p. 59 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dmeq 5801 | Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | ||
Theorem | dmeqi 5802 | Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ dom 𝐴 = dom 𝐵 | ||
Theorem | dmeqd 5803 | Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → dom 𝐴 = dom 𝐵) | ||
Theorem | opeldmd 5804 | Membership of first of an ordered pair in a domain. Deduction version of opeldm 5805. (Contributed by AV, 11-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) | ||
Theorem | opeldm 5805 | Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) | ||
Theorem | breldm 5806 | Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) | ||
Theorem | breldmg 5807 | Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | ||
Theorem | dmun 5808 | The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) | ||
Theorem | dmin 5809 | The domain of an intersection is included in the intersection of the domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) | ||
Theorem | breldmd 5810 | Membership of first of a binary relation in a domain. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) | ||
Theorem | dmiun 5811 | The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.) |
⊢ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 dom 𝐵 | ||
Theorem | dmuni 5812* | The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.) |
⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 | ||
Theorem | dmopab 5813* | The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} | ||
Theorem | dmopabelb 5814* | A set is an element of the domain of a ordered pair class abstraction iff there is a second set so that both sets fulfil the wff of the class abstraction. (Contributed by AV, 19-Oct-2023.) |
⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ dom {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑦𝜓)) | ||
Theorem | dmopab2rex 5815* | The domain of an ordered pair class abstraction with two nested restricted existential quantifiers. (Contributed by AV, 23-Oct-2023.) |
⊢ (∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑉 𝐵 ∈ 𝑋 ∧ ∀𝑖 ∈ 𝐼 𝐷 ∈ 𝑊) → dom {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 (𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑥 = 𝐶 ∧ 𝑦 = 𝐷))} = {𝑥 ∣ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 𝑥 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑥 = 𝐶)}) | ||
Theorem | dmopabss 5816* | Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | ||
Theorem | dmopab3 5817* | The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) | ||
Theorem | dm0 5818 | The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ dom ∅ = ∅ | ||
Theorem | dmi 5819 | The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ dom I = V | ||
Theorem | dmv 5820 | The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.) |
⊢ dom V = V | ||
Theorem | dmep 5821 | The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof shortened by BJ, 26-Dec-2023.) |
⊢ dom E = V | ||
Theorem | domepOLD 5822 | Obsolete proof of dmep 5821 as of 26-Dec-2023. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ dom E = V | ||
Theorem | dm0rn0 5823 | An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998.) |
⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) | ||
Theorem | rn0 5824 | The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) |
⊢ ran ∅ = ∅ | ||
Theorem | rnep 5825 | The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023.) |
⊢ ran E = (V ∖ {∅}) | ||
Theorem | reldm0 5826 | A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.) |
⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) | ||
Theorem | dmxp 5827 | The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | ||
Theorem | dmxpid 5828 | The domain of a Cartesian square. (Contributed by NM, 28-Jul-1995.) |
⊢ dom (𝐴 × 𝐴) = 𝐴 | ||
Theorem | dmxpin 5829 | The domain of the intersection of two Cartesian squares. Unlike in dmin 5809, equality holds. (Contributed by NM, 29-Jan-2008.) |
⊢ dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴 ∩ 𝐵) | ||
Theorem | xpid11 5830 | The Cartesian square is a one-to-one construction. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵) | ||
Theorem | dmcnvcnv 5831 | The domain of the double converse of a class is equal to its domain (even when that class in not a relation, in which case dfrel2 6081 gives another proof). (Contributed by NM, 8-Apr-2007.) |
⊢ dom ◡◡𝐴 = dom 𝐴 | ||
Theorem | rncnvcnv 5832 | The range of the double converse of a class is equal to its range (even when that class in not a relation). (Contributed by NM, 8-Apr-2007.) |
⊢ ran ◡◡𝐴 = ran 𝐴 | ||
Theorem | elreldm 5833 | The first member of an ordered pair in a relation belongs to the domain of the relation (see op1stb 5380). (Contributed by NM, 28-Jul-2004.) |
⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵 ∈ dom 𝐴) | ||
Theorem | rneq 5834 | Equality theorem for range. (Contributed by NM, 29-Dec-1996.) |
⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | ||
Theorem | rneqi 5835 | Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ran 𝐴 = ran 𝐵 | ||
Theorem | rneqd 5836 | Equality deduction for range. (Contributed by NM, 4-Mar-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ran 𝐴 = ran 𝐵) | ||
Theorem | rnss 5837 | Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) | ||
Theorem | rnssi 5838 | Subclass inference for range. (Contributed by Peter Mazsa, 24-Sep-2022.) |
⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ran 𝐴 ⊆ ran 𝐵 | ||
Theorem | brelrng 5839 | The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.) |
⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) | ||
Theorem | brelrn 5840 | The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) | ||
Theorem | opelrn 5841 | Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ran 𝐶) | ||
Theorem | releldm 5842 | The first argument of a binary relation belongs to its domain. Note that 𝐴𝑅𝐵 does not imply Rel 𝑅: see for example nrelv 5699 and brv 5381. (Contributed by NM, 2-Jul-2008.) |
⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | ||
Theorem | relelrn 5843 | The second argument of a binary relation belongs to its range. (Contributed by NM, 2-Jul-2008.) |
⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅) | ||
Theorem | releldmb 5844* | Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.) |
⊢ (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | ||
Theorem | relelrnb 5845* | Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.) |
⊢ (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴)) | ||
Theorem | releldmi 5846 | The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
⊢ Rel 𝑅 ⇒ ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) | ||
Theorem | relelrni 5847 | The second argument of a binary relation belongs to its range. (Contributed by NM, 28-Apr-2015.) |
⊢ Rel 𝑅 ⇒ ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ ran 𝑅) | ||
Theorem | dfrnf 5848* | Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | ||
Theorem | nfdm 5849 | Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥dom 𝐴 | ||
Theorem | nfrn 5850 | Bound-variable hypothesis builder for range. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥ran 𝐴 | ||
Theorem | dmiin 5851 | Domain of an intersection. (Contributed by FL, 15-Oct-2012.) |
⊢ dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 | ||
Theorem | rnopab 5852* | The range of a class of ordered pairs. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
⊢ ran {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑} | ||
Theorem | rnmpt 5853* | The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} | ||
Theorem | elrnmpt 5854* | The range of a function in maps-to notation. (Contributed by Mario Carneiro, 20-Feb-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) | ||
Theorem | elrnmpt1s 5855* | Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) ⇒ ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) | ||
Theorem | elrnmpt1 5856 | Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ ran 𝐹) | ||
Theorem | elrnmptg 5857* | Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) | ||
Theorem | elrnmpti 5858* | Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) | ||
Theorem | elrnmptd 5859* | The range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) | ||
Theorem | elrnmptdv 5860* | Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) | ||
Theorem | elrnmpt2d 5861* | Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) | ||
Theorem | dfiun3g 5862 | Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | ||
Theorem | dfiin3g 5863 | Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) | ||
Theorem | dfiun3 5864 | Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐵 ∈ V ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) | ||
Theorem | dfiin3 5865 | Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐵 ∈ V ⇒ ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) | ||
Theorem | riinint 5866* | Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) | ||
Theorem | relrn0 5867 | A relation is empty iff its range is empty. (Contributed by NM, 15-Sep-2004.) |
⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) | ||
Theorem | dmrnssfld 5868 | The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.) |
⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | ||
Theorem | dmcoss 5869 | Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 | ||
Theorem | rncoss 5870 | Range of a composition. (Contributed by NM, 19-Mar-1998.) |
⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 | ||
Theorem | dmcosseq 5871 | Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴 ∘ 𝐵) = dom 𝐵) | ||
Theorem | dmcoeq 5872 | Domain of a composition. (Contributed by NM, 19-Mar-1998.) |
⊢ (dom 𝐴 = ran 𝐵 → dom (𝐴 ∘ 𝐵) = dom 𝐵) | ||
Theorem | rncoeq 5873 | Range of a composition. (Contributed by NM, 19-Mar-1998.) |
⊢ (dom 𝐴 = ran 𝐵 → ran (𝐴 ∘ 𝐵) = ran 𝐴) | ||
Theorem | reseq1 5874 | Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | ||
Theorem | reseq2 5875 | Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | ||
Theorem | reseq1i 5876 | Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) | ||
Theorem | reseq2i 5877 | Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) | ||
Theorem | reseq12i 5878 | Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) | ||
Theorem | reseq1d 5879 | Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | ||
Theorem | reseq2d 5880 | Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | ||
Theorem | reseq12d 5881 | Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷)) | ||
Theorem | nfres 5882 | Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) | ||
Theorem | csbres 5883 | Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 23-Aug-2018.) |
⊢ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) | ||
Theorem | res0 5884 | A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
⊢ (𝐴 ↾ ∅) = ∅ | ||
Theorem | dfres3 5885 | Alternate definition of restriction. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × ran 𝐴)) | ||
Theorem | opelres 5886 | Ordered pair elementhood in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) (Revised by BJ, 18-Feb-2022.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.) |
⊢ (𝐶 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) | ||
Theorem | brres 5887 | Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.) |
⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | ||
Theorem | opelresi 5888 | Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) |
⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅)) | ||
Theorem | brresi 5889 | Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.) |
⊢ 𝐶 ∈ V ⇒ ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) | ||
Theorem | opres 5890 | Ordered pair membership in a restriction when the first member belongs to the restricting class. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐷 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) | ||
Theorem | resieq 5891 | A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.) |
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)) | ||
Theorem | opelidres 5892 | 〈𝐴, 𝐴〉 belongs to a restriction of the identity class iff 𝐴 belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.) |
⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 ∈ ( I ↾ 𝐵) ↔ 𝐴 ∈ 𝐵)) | ||
Theorem | resres 5893 | The restriction of a restriction. (Contributed by NM, 27-Mar-2008.) |
⊢ ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵 ∩ 𝐶)) | ||
Theorem | resundi 5894 | Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
⊢ (𝐴 ↾ (𝐵 ∪ 𝐶)) = ((𝐴 ↾ 𝐵) ∪ (𝐴 ↾ 𝐶)) | ||
Theorem | resundir 5895 | Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.) |
⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) | ||
Theorem | resindi 5896 | Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008.) |
⊢ (𝐴 ↾ (𝐵 ∩ 𝐶)) = ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ 𝐶)) | ||
Theorem | resindir 5897 | Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008.) |
⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) | ||
Theorem | inres 5898 | Move intersection into class restriction. (Contributed by NM, 18-Dec-2008.) |
⊢ (𝐴 ∩ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ 𝐵) ↾ 𝐶) | ||
Theorem | resdifcom 5899 | Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021.) |
⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ↾ 𝐵) | ||
Theorem | resiun1 5900* | Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) (Proof shortened by JJ, 25-Aug-2021.) |
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |