HomeHome Metamath Proof Explorer
Theorem List (p. 59 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 5801-5900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdmeq 5801 Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
(𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
 
Theoremdmeqi 5802 Equality inference for domain. (Contributed by NM, 4-Mar-2004.)
𝐴 = 𝐵       dom 𝐴 = dom 𝐵
 
Theoremdmeqd 5803 Equality deduction for domain. (Contributed by NM, 4-Mar-2004.)
(𝜑𝐴 = 𝐵)       (𝜑 → dom 𝐴 = dom 𝐵)
 
Theoremopeldmd 5804 Membership of first of an ordered pair in a domain. Deduction version of opeldm 5805. (Contributed by AV, 11-Mar-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶))
 
Theoremopeldm 5805 Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶)
 
Theorembreldm 5806 Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝑅𝐵𝐴 ∈ dom 𝑅)
 
Theorembreldmg 5807 Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.)
((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
 
Theoremdmun 5808 The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
 
Theoremdmin 5809 The domain of an intersection is included in the intersection of the domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)
 
Theorembreldmd 5810 Membership of first of a binary relation in a domain. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
(𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)    &   (𝜑𝐴𝑅𝐵)       (𝜑𝐴 ∈ dom 𝑅)
 
Theoremdmiun 5811 The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.)
dom 𝑥𝐴 𝐵 = 𝑥𝐴 dom 𝐵
 
Theoremdmuni 5812* The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.)
dom 𝐴 = 𝑥𝐴 dom 𝑥
 
Theoremdmopab 5813* The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑}
 
Theoremdmopabelb 5814* A set is an element of the domain of a ordered pair class abstraction iff there is a second set so that both sets fulfil the wff of the class abstraction. (Contributed by AV, 19-Oct-2023.)
(𝑥 = 𝑋 → (𝜑𝜓))       (𝑋𝑉 → (𝑋 ∈ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑦𝜓))
 
Theoremdmopab2rex 5815* The domain of an ordered pair class abstraction with two nested restricted existential quantifiers. (Contributed by AV, 23-Oct-2023.)
(∀𝑢𝑈 (∀𝑣𝑉 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) → dom {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑈 (∃𝑣𝑉 (𝑥 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑥 = 𝐶𝑦 = 𝐷))} = {𝑥 ∣ ∃𝑢𝑈 (∃𝑣𝑉 𝑥 = 𝐴 ∨ ∃𝑖𝐼 𝑥 = 𝐶)})
 
Theoremdmopabss 5816* Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
 
Theoremdmopab3 5817* The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
(∀𝑥𝐴𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
 
Theoremdm0 5818 The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
dom ∅ = ∅
 
Theoremdmi 5819 The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
dom I = V
 
Theoremdmv 5820 The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.)
dom V = V
 
Theoremdmep 5821 The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof shortened by BJ, 26-Dec-2023.)
dom E = V
 
TheoremdomepOLD 5822 Obsolete proof of dmep 5821 as of 26-Dec-2023. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof modification is discouraged.) (New usage is discouraged.)
dom E = V
 
Theoremdm0rn0 5823 An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998.)
(dom 𝐴 = ∅ ↔ ran 𝐴 = ∅)
 
Theoremrn0 5824 The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.)
ran ∅ = ∅
 
Theoremrnep 5825 The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023.)
ran E = (V ∖ {∅})
 
Theoremreldm0 5826 A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.)
(Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))
 
Theoremdmxp 5827 The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
 
Theoremdmxpid 5828 The domain of a Cartesian square. (Contributed by NM, 28-Jul-1995.)
dom (𝐴 × 𝐴) = 𝐴
 
Theoremdmxpin 5829 The domain of the intersection of two Cartesian squares. Unlike in dmin 5809, equality holds. (Contributed by NM, 29-Jan-2008.)
dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴𝐵)
 
Theoremxpid11 5830 The Cartesian square is a one-to-one construction. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵)
 
Theoremdmcnvcnv 5831 The domain of the double converse of a class is equal to its domain (even when that class in not a relation, in which case dfrel2 6081 gives another proof). (Contributed by NM, 8-Apr-2007.)
dom 𝐴 = dom 𝐴
 
Theoremrncnvcnv 5832 The range of the double converse of a class is equal to its range (even when that class in not a relation). (Contributed by NM, 8-Apr-2007.)
ran 𝐴 = ran 𝐴
 
Theoremelreldm 5833 The first member of an ordered pair in a relation belongs to the domain of the relation (see op1stb 5380). (Contributed by NM, 28-Jul-2004.)
((Rel 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐴)
 
Theoremrneq 5834 Equality theorem for range. (Contributed by NM, 29-Dec-1996.)
(𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)
 
Theoremrneqi 5835 Equality inference for range. (Contributed by NM, 4-Mar-2004.)
𝐴 = 𝐵       ran 𝐴 = ran 𝐵
 
Theoremrneqd 5836 Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
(𝜑𝐴 = 𝐵)       (𝜑 → ran 𝐴 = ran 𝐵)
 
Theoremrnss 5837 Subset theorem for range. (Contributed by NM, 22-Mar-1998.)
(𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)
 
Theoremrnssi 5838 Subclass inference for range. (Contributed by Peter Mazsa, 24-Sep-2022.)
𝐴𝐵       ran 𝐴 ⊆ ran 𝐵
 
Theorembrelrng 5839 The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.)
((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)
 
Theorembrelrn 5840 The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝐶𝐵𝐵 ∈ ran 𝐶)
 
Theoremopelrn 5841 Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐵 ∈ ran 𝐶)
 
Theoremreleldm 5842 The first argument of a binary relation belongs to its domain. Note that 𝐴𝑅𝐵 does not imply Rel 𝑅: see for example nrelv 5699 and brv 5381. (Contributed by NM, 2-Jul-2008.)
((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
 
Theoremrelelrn 5843 The second argument of a binary relation belongs to its range. (Contributed by NM, 2-Jul-2008.)
((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅)
 
Theoremreleldmb 5844* Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.)
(Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
 
Theoremrelelrnb 5845* Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.)
(Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴))
 
Theoremreleldmi 5846 The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.)
Rel 𝑅       (𝐴𝑅𝐵𝐴 ∈ dom 𝑅)
 
Theoremrelelrni 5847 The second argument of a binary relation belongs to its range. (Contributed by NM, 28-Apr-2015.)
Rel 𝑅       (𝐴𝑅𝐵𝐵 ∈ ran 𝑅)
 
Theoremdfrnf 5848* Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑦𝐴       ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
 
Theoremnfdm 5849 Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴       𝑥dom 𝐴
 
Theoremnfrn 5850 Bound-variable hypothesis builder for range. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴       𝑥ran 𝐴
 
Theoremdmiin 5851 Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵
 
Theoremrnopab 5852* The range of a class of ordered pairs. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
ran {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑}
 
Theoremrnmpt 5853* The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴𝐵)       ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
 
Theoremelrnmpt 5854* The range of a function in maps-to notation. (Contributed by Mario Carneiro, 20-Feb-2015.)
𝐹 = (𝑥𝐴𝐵)       (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
 
Theoremelrnmpt1s 5855* Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.)
𝐹 = (𝑥𝐴𝐵)    &   (𝑥 = 𝐷𝐵 = 𝐶)       ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
 
Theoremelrnmpt1 5856 Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴𝐵)       ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)
 
Theoremelrnmptg 5857* Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴𝐵)       (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
 
Theoremelrnmpti 5858* Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴𝐵)    &   𝐵 ∈ V       (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵)
 
Theoremelrnmptd 5859* The range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝐹 = (𝑥𝐴𝐵)    &   (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)    &   (𝜑𝐶𝑉)       (𝜑𝐶 ∈ ran 𝐹)
 
Theoremelrnmptdv 5860* Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐹 = (𝑥𝐴𝐵)    &   (𝜑𝐶𝐴)    &   (𝜑𝐷𝑉)    &   ((𝜑𝑥 = 𝐶) → 𝐷 = 𝐵)       (𝜑𝐷 ∈ ran 𝐹)
 
Theoremelrnmpt2d 5861* Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐹 = (𝑥𝐴𝐵)    &   (𝜑𝐶 ∈ ran 𝐹)       (𝜑 → ∃𝑥𝐴 𝐶 = 𝐵)
 
Theoremdfiun3g 5862 Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
(∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
 
Theoremdfiin3g 5863 Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
(∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
 
Theoremdfiun3 5864 Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
𝐵 ∈ V        𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵)
 
Theoremdfiin3 5865 Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
𝐵 ∈ V        𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵)
 
Theoremriinint 5866* Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
((𝑋𝑉 ∧ ∀𝑘𝐼 𝑆𝑋) → (𝑋 𝑘𝐼 𝑆) = ({𝑋} ∪ ran (𝑘𝐼𝑆)))
 
Theoremrelrn0 5867 A relation is empty iff its range is empty. (Contributed by NM, 15-Sep-2004.)
(Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅))
 
Theoremdmrnssfld 5868 The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.)
(dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
 
Theoremdmcoss 5869 Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
dom (𝐴𝐵) ⊆ dom 𝐵
 
Theoremrncoss 5870 Range of a composition. (Contributed by NM, 19-Mar-1998.)
ran (𝐴𝐵) ⊆ ran 𝐴
 
Theoremdmcosseq 5871 Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(ran 𝐵 ⊆ dom 𝐴 → dom (𝐴𝐵) = dom 𝐵)
 
Theoremdmcoeq 5872 Domain of a composition. (Contributed by NM, 19-Mar-1998.)
(dom 𝐴 = ran 𝐵 → dom (𝐴𝐵) = dom 𝐵)
 
Theoremrncoeq 5873 Range of a composition. (Contributed by NM, 19-Mar-1998.)
(dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)
 
Theoremreseq1 5874 Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.)
(𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremreseq2 5875 Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.)
(𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremreseq1i 5876 Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
𝐴 = 𝐵       (𝐴𝐶) = (𝐵𝐶)
 
Theoremreseq2i 5877 Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐴 = 𝐵       (𝐶𝐴) = (𝐶𝐵)
 
Theoremreseq12i 5878 Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐶) = (𝐵𝐷)
 
Theoremreseq1d 5879 Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremreseq2d 5880 Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremreseq12d 5881 Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶) = (𝐵𝐷))
 
Theoremnfres 5882 Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝐴𝐵)
 
Theoremcsbres 5883 Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 23-Aug-2018.)
𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
 
Theoremres0 5884 A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.)
(𝐴 ↾ ∅) = ∅
 
Theoremdfres3 5885 Alternate definition of restriction. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(𝐴𝐵) = (𝐴 ∩ (𝐵 × ran 𝐴))
 
Theoremopelres 5886 Ordered pair elementhood in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) (Revised by BJ, 18-Feb-2022.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.)
(𝐶𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))
 
Theorembrres 5887 Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.)
(𝐶𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶)))
 
Theoremopelresi 5888 Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.)
𝐶 ∈ V       (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅))
 
Theorembrresi 5889 Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.)
𝐶 ∈ V       (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶))
 
Theoremopres 5890 Ordered pair membership in a restriction when the first member belongs to the restricting class. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
𝐵 ∈ V       (𝐴𝐷 → (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶))
 
Theoremresieq 5891 A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.)
((𝐵𝐴𝐶𝐴) → (𝐵( I ↾ 𝐴)𝐶𝐵 = 𝐶))
 
Theoremopelidres 5892 𝐴, 𝐴 belongs to a restriction of the identity class iff 𝐴 belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.)
(𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ 𝐴𝐵))
 
Theoremresres 5893 The restriction of a restriction. (Contributed by NM, 27-Mar-2008.)
((𝐴𝐵) ↾ 𝐶) = (𝐴 ↾ (𝐵𝐶))
 
Theoremresundi 5894 Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
(𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
 
Theoremresundir 5895 Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.)
((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
 
Theoremresindi 5896 Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008.)
(𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
 
Theoremresindir 5897 Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008.)
((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
 
Theoreminres 5898 Move intersection into class restriction. (Contributed by NM, 18-Dec-2008.)
(𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ↾ 𝐶)
 
Theoremresdifcom 5899 Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021.)
((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ↾ 𝐵)
 
Theoremresiun1 5900* Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) (Proof shortened by JJ, 25-Aug-2021.)
( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >