![]() |
Metamath
Proof Explorer Theorem List (p. 59 of 435) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28331) |
![]() (28332-29856) |
![]() (29857-43448) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | difxp1 5801 | Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.) |
⊢ ((𝐴 ∖ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶)) | ||
Theorem | difxp2 5802 | Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.) |
⊢ (𝐴 × (𝐵 ∖ 𝐶)) = ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶)) | ||
Theorem | djudisj 5803* | Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) | ||
Theorem | xpdifid 5804* | The set of distinct couples in a Cartesian product. (Contributed by Thierry Arnoux, 25-May-2019.) |
⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) = ((𝐴 × 𝐵) ∖ I ) | ||
Theorem | resdisj 5805 | A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ↾ 𝐴) ↾ 𝐵) = ∅) | ||
Theorem | rnxp 5806 | The range of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) | ||
Theorem | dmxpss 5807 | The domain of a Cartesian product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.) |
⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | ||
Theorem | rnxpss 5808 | The range of a Cartesian product is a subclass of the second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | ||
Theorem | rnxpid 5809 | The range of a square Cartesian product. (Contributed by FL, 17-May-2010.) |
⊢ ran (𝐴 × 𝐴) = 𝐴 | ||
Theorem | ssxpb 5810 | A Cartesian product subclass relationship is equivalent to the relationship for it components. (Contributed by NM, 17-Dec-2008.) |
⊢ ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷))) | ||
Theorem | xp11 5811 | The Cartesian product of nonempty classes is one-to-one. (Contributed by NM, 31-May-2008.) |
⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | xpcan 5812 | Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.) |
⊢ (𝐶 ≠ ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | xpcan2 5813 | Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.) |
⊢ (𝐶 ≠ ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | ssrnres 5814 | Subset of the range of a restriction. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵) | ||
Theorem | rninxp 5815* | Range of the intersection with a Cartesian product. (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) | ||
Theorem | dminxp 5816* | Domain of the intersection with a Cartesian product. (Contributed by NM, 17-Jan-2006.) |
⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) | ||
Theorem | imainrect 5817 | Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.) |
⊢ ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ((𝐺 “ (𝑌 ∩ 𝐴)) ∩ 𝐵) | ||
Theorem | xpima 5818 | The image by a constant function (or other Cartesian product). (Contributed by Thierry Arnoux, 4-Feb-2017.) |
⊢ ((𝐴 × 𝐵) “ 𝐶) = if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) | ||
Theorem | xpima1 5819 | The image by a Cartesian product. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅) | ||
Theorem | xpima2 5820 | The image by a Cartesian product. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
⊢ ((𝐴 ∩ 𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) | ||
Theorem | xpimasn 5821 | The image of a singleton by a Cartesian product. (Contributed by Thierry Arnoux, 14-Jan-2018.) (Proof shortened by BJ, 6-Apr-2019.) |
⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) | ||
Theorem | sossfld 5822 | The base set of a strict order is contained in the field of the relation, except possibly for one element (note that ∅ Or {𝐵}). (Contributed by Mario Carneiro, 27-Apr-2015.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅)) | ||
Theorem | sofld 5823 | The base set of a nonempty strict order is the same as the field of the relation. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴) ∧ 𝑅 ≠ ∅) → 𝐴 = (dom 𝑅 ∪ ran 𝑅)) | ||
Theorem | cnvcnv3 5824* | The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015.) |
⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} | ||
Theorem | dfrel2 5825 | Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | ||
Theorem | dfrel4v 5826* | A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6489 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) |
⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) | ||
Theorem | dfrel4 5827* | A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6489 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) (Revised by Thierry Arnoux, 11-May-2017.) |
⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑦𝑅 ⇒ ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) | ||
Theorem | cnvcnv 5828 | The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.) |
⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | ||
Theorem | cnvcnv2 5829 | The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.) |
⊢ ◡◡𝐴 = (𝐴 ↾ V) | ||
Theorem | cnvcnvss 5830 | The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.) |
⊢ ◡◡𝐴 ⊆ 𝐴 | ||
Theorem | cnveqb 5831 | Equality theorem for converse. (Contributed by FL, 19-Sep-2011.) |
⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ◡𝐴 = ◡𝐵)) | ||
Theorem | cnveq0 5832 | A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.) |
⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅)) | ||
Theorem | dfrel3 5833 | Alternate definition of relation. (Contributed by NM, 14-May-2008.) |
⊢ (Rel 𝑅 ↔ (𝑅 ↾ V) = 𝑅) | ||
Theorem | elid 5834* | Characterization of the elements of the identity relation. TODO: reorder theorems to move this theorem and dfrel3 5833 after elrid 5695. (Contributed by BJ, 28-Aug-2022.) |
⊢ (𝐴 ∈ I ↔ ∃𝑥 𝐴 = 〈𝑥, 𝑥〉) | ||
Theorem | dmresv 5835 | The domain of a universal restriction. (Contributed by NM, 14-May-2008.) |
⊢ dom (𝐴 ↾ V) = dom 𝐴 | ||
Theorem | rnresv 5836 | The range of a universal restriction. (Contributed by NM, 14-May-2008.) |
⊢ ran (𝐴 ↾ V) = ran 𝐴 | ||
Theorem | dfrn4 5837 | Range defined in terms of image. (Contributed by NM, 14-May-2008.) |
⊢ ran 𝐴 = (𝐴 “ V) | ||
Theorem | csbrn 5838 | Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.) |
⊢ ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵 | ||
Theorem | rescnvcnv 5839 | The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | ||
Theorem | cnvcnvres 5840 | The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007.) |
⊢ ◡◡(𝐴 ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) | ||
Theorem | imacnvcnv 5841 | The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.) |
⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) | ||
Theorem | dmsnn0 5842 | The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | ||
Theorem | rnsnn0 5843 | The range of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) |
⊢ (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅) | ||
Theorem | dmsn0 5844 | The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.) |
⊢ dom {∅} = ∅ | ||
Theorem | cnvsn0 5845 | The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ ◡{∅} = ∅ | ||
Theorem | dmsn0el 5846 | The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.) |
⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) | ||
Theorem | relsn2 5847 | A singleton is a relation iff it has a nonempty domain. (Contributed by NM, 25-Sep-2013.) Make hypothesis an antecedent. (Revised by BJ, 12-Feb-2022.) |
⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ dom {𝐴} ≠ ∅)) | ||
Theorem | dmsnopg 5848 | The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) | ||
Theorem | dmsnopss 5849 | The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on 𝐵). (Contributed by Mario Carneiro, 30-Apr-2015.) |
⊢ dom {〈𝐴, 𝐵〉} ⊆ {𝐴} | ||
Theorem | dmpropg 5850 | The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) | ||
Theorem | dmsnop 5851 | The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ 𝐵 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} | ||
Theorem | dmprop 5852 | The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.) |
⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} | ||
Theorem | dmtpop 5853 | The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.) |
⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = {𝐴, 𝐶, 𝐸} | ||
Theorem | cnvcnvsn 5854 | Double converse of a singleton of an ordered pair. (Unlike cnvsn 5861, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ ◡◡{〈𝐴, 𝐵〉} = ◡{〈𝐵, 𝐴〉} | ||
Theorem | dmsnsnsn 5855 | The domain of the singleton of the singleton of a singleton. (Contributed by NM, 15-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ dom {{{𝐴}}} = {𝐴} | ||
Theorem | rnsnopg 5856 | The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐵〉} = {𝐵}) | ||
Theorem | rnpropg 5857 | The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐶, 𝐷}) | ||
Theorem | cnvsng 5858 | Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | ||
Theorem | rnsnop 5859 | The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} | ||
Theorem | op1sta 5860 | Extract the first member of an ordered pair. (See op2nda 5863 to extract the second member, op1stb 5161 for an alternate version, and op1st 7437 for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 | ||
Theorem | cnvsn 5861 | Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} | ||
Theorem | op2ndb 5862 | Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 5161 to extract the first member, op2nda 5863 for an alternate version, and op2nd 7438 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 | ||
Theorem | op2nda 5863 | Extract the second member of an ordered pair. (See op1sta 5860 to extract the first member, op2ndb 5862 for an alternate version, and op2nd 7438 for the preferred version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 | ||
Theorem | opswap 5864 | Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.) |
⊢ ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 | ||
Theorem | cnvresima 5865 | An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.) |
⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) | ||
Theorem | resdm2 5866 | A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.) |
⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 | ||
Theorem | resdmres 5867 | Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ↾ 𝐵) | ||
Theorem | resresdm 5868 | A restriction by an arbitrary set is a restriction by its domain. (Contributed by AV, 16-Nov-2020.) |
⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹)) | ||
Theorem | imadmres 5869 | The image of the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
⊢ (𝐴 “ dom (𝐴 ↾ 𝐵)) = (𝐴 “ 𝐵) | ||
Theorem | mptpreima 5870* | The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (◡𝐹 “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} | ||
Theorem | mptiniseg 5871* | Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑉 → (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) | ||
Theorem | dmmpt 5872 | The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} | ||
Theorem | dmmptss 5873* | The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
Theorem | dmmptg 5874* | The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | ||
Theorem | relco 5875 | A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
⊢ Rel (𝐴 ∘ 𝐵) | ||
Theorem | dfco2 5876* | Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.) |
⊢ (𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ V ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) | ||
Theorem | dfco2a 5877* | Generalization of dfco2 5876, where 𝐶 can have any value between dom 𝐴 ∩ ran 𝐵 and V. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ 𝐶 ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))) | ||
Theorem | coundi 5878 | Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) | ||
Theorem | coundir 5879 | Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((𝐴 ∪ 𝐵) ∘ 𝐶) = ((𝐴 ∘ 𝐶) ∪ (𝐵 ∘ 𝐶)) | ||
Theorem | cores 5880 | Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (ran 𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ∘ 𝐵) = (𝐴 ∘ 𝐵)) | ||
Theorem | resco 5881 | Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.) |
⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) | ||
Theorem | imaco 5882 | Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006.) |
⊢ ((𝐴 ∘ 𝐵) “ 𝐶) = (𝐴 “ (𝐵 “ 𝐶)) | ||
Theorem | rnco 5883 | The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | ||
Theorem | rnco2 5884 | The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.) |
⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) | ||
Theorem | dmco 5885 | The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.) |
⊢ dom (𝐴 ∘ 𝐵) = (◡𝐵 “ dom 𝐴) | ||
Theorem | coeq0 5886 | A composition of two relations is empty iff there is no overlap between the range of the second and the domain of the first. Useful in combination with coundi 5878 and coundir 5879 to prune meaningless terms in the result. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) | ||
Theorem | coiun 5887* | Composition with an indexed union. (Contributed by NM, 21-Dec-2008.) |
⊢ (𝐴 ∘ ∪ 𝑥 ∈ 𝐶 𝐵) = ∪ 𝑥 ∈ 𝐶 (𝐴 ∘ 𝐵) | ||
Theorem | cocnvcnv1 5888 | A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.) |
⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) | ||
Theorem | cocnvcnv2 5889 | A composition is not affected by a double converse of its second argument. (Contributed by NM, 8-Oct-2007.) |
⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ 𝐵) | ||
Theorem | cores2 5890 | Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.) |
⊢ (dom 𝐴 ⊆ 𝐶 → (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ 𝐵)) | ||
Theorem | co02 5891 | Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
⊢ (𝐴 ∘ ∅) = ∅ | ||
Theorem | co01 5892 | Composition with the empty set. (Contributed by NM, 24-Apr-2004.) |
⊢ (∅ ∘ 𝐴) = ∅ | ||
Theorem | coi1 5893 | Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
⊢ (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴) | ||
Theorem | coi2 5894 | Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) | ||
Theorem | coires1 5895 | Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.) |
⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) | ||
Theorem | coass 5896 | Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.) |
⊢ ((𝐴 ∘ 𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵 ∘ 𝐶)) | ||
Theorem | relcnvtr 5897 | A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.) |
⊢ (Rel 𝑅 → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅)) | ||
Theorem | relssdmrn 5898 | A relation is included in the Cartesian product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) |
⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) | ||
Theorem | cnvssrndm 5899 | The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) | ||
Theorem | cossxp 5900 | Composition as a subset of the Cartesian product of factors. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |