| Metamath
Proof Explorer Theorem List (p. 59 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | coeq12i 5801 | Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) | ||
| Theorem | coeq12d 5802 | Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷)) | ||
| Theorem | nfco 5803 | Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∘ 𝐵) | ||
| Theorem | brcog 5804* | Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | ||
| Theorem | opelco2g 5805* | Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐷 ∧ 〈𝑥, 𝐵〉 ∈ 𝐶))) | ||
| Theorem | brcogw 5806 | Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) | ||
| Theorem | eqbrrdva 5807* | Deduction from extensionality principle for relations, given an equivalence only on the relation domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ (𝐶 × 𝐷)) & ⊢ (𝜑 → 𝐵 ⊆ (𝐶 × 𝐷)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | brco 5808* | Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) | ||
| Theorem | opelco 5809* | Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) | ||
| Theorem | cnvss 5810 | Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.) |
| ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | ||
| Theorem | cnveq 5811 | Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995.) |
| ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | ||
| Theorem | cnveqi 5812 | Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ◡𝐴 = ◡𝐵 | ||
| Theorem | cnveqd 5813 | Equality deduction for converse relation. (Contributed by NM, 6-Dec-2013.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ◡𝐴 = ◡𝐵) | ||
| Theorem | elcnv 5814* | Membership in a converse relation. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.) |
| ⊢ (𝐴 ∈ ◡𝑅 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑦𝑅𝑥)) | ||
| Theorem | elcnv2 5815* | Membership in a converse relation. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.) |
| ⊢ (𝐴 ∈ ◡𝑅 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑦, 𝑥〉 ∈ 𝑅)) | ||
| Theorem | nfcnv 5816 | Bound-variable hypothesis builder for converse relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥◡𝐴 | ||
| Theorem | brcnvg 5817 | The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | ||
| Theorem | opelcnvg 5818 | Ordered-pair membership in converse relation. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) | ||
| Theorem | opelcnv 5819 | Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) | ||
| Theorem | brcnv 5820 | The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) | ||
| Theorem | csbcnv 5821 | Move class substitution in and out of the converse of a relation. Version of csbcnvgALT 5822 without a sethood antecedent but depending on more axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (Revised by NM, 23-Aug-2018.) |
| ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹 | ||
| Theorem | csbcnvgALT 5822 | Move class substitution in and out of the converse of a relation. Version of csbcnv 5821 with a sethood antecedent but depending on fewer axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹) | ||
| Theorem | cnvco 5823 | Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | ||
| Theorem | cnvuni 5824* | The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.) |
| ⊢ ◡∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ◡𝑥 | ||
| Theorem | dfdm3 5825* | Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
| ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴} | ||
| Theorem | dfrn2 5826* | Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.) |
| ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | ||
| Theorem | dfrn3 5827* | Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
| ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | ||
| Theorem | elrn2g 5828* | Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) | ||
| Theorem | elrng 5829* | Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) | ||
| Theorem | elrn2 5830* | Membership in a range. (Contributed by NM, 10-Jul-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) | ||
| Theorem | elrn 5831* | Membership in a range. (Contributed by NM, 2-Apr-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) | ||
| Theorem | ssrelrn 5832* | If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.) |
| ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎 ∈ 𝐴 𝑎𝑅𝑌) | ||
| Theorem | dfdm4 5833 | Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
| ⊢ dom 𝐴 = ran ◡𝐴 | ||
| Theorem | dfdmf 5834* | Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | ||
| Theorem | csbdm 5835 | Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017.) (Revised by NM, 24-Aug-2018.) |
| ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵 | ||
| Theorem | eldmg 5836* | Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | ||
| Theorem | eldm2g 5837* | Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) | ||
| Theorem | eldm 5838* | Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) | ||
| Theorem | eldm2 5839* | Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) | ||
| Theorem | dmss 5840 | Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) | ||
| Theorem | dmeq 5841 | Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | ||
| Theorem | dmeqi 5842 | Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ dom 𝐴 = dom 𝐵 | ||
| Theorem | dmeqd 5843 | Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → dom 𝐴 = dom 𝐵) | ||
| Theorem | opeldmd 5844 | Membership of first of an ordered pair in a domain. Deduction version of opeldm 5845. (Contributed by AV, 11-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) | ||
| Theorem | opeldm 5845 | Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) | ||
| Theorem | breldm 5846 | Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) | ||
| Theorem | breldmg 5847 | Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | ||
| Theorem | dmun 5848 | The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) | ||
| Theorem | dmin 5849 | The domain of an intersection is included in the intersection of the domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
| ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) | ||
| Theorem | breldmd 5850 | Membership of first of a binary relation in a domain. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) | ||
| Theorem | dmiun 5851 | The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 dom 𝐵 | ||
| Theorem | dmuni 5852* | The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.) |
| ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 | ||
| Theorem | dmopab 5853* | The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
| ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} | ||
| Theorem | dmopabelb 5854* | A set is an element of the domain of an ordered pair class abstraction iff there is a second set so that both sets fulfil the wff of the class abstraction. (Contributed by AV, 19-Oct-2023.) |
| ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ dom {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑦𝜓)) | ||
| Theorem | dmopab2rex 5855* | The domain of an ordered pair class abstraction with two nested restricted existential quantifiers. (Contributed by AV, 23-Oct-2023.) |
| ⊢ (∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑉 𝐵 ∈ 𝑋 ∧ ∀𝑖 ∈ 𝐼 𝐷 ∈ 𝑊) → dom {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 (𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑥 = 𝐶 ∧ 𝑦 = 𝐷))} = {𝑥 ∣ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 𝑥 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑥 = 𝐶)}) | ||
| Theorem | dmopabss 5856* | Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
| ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | ||
| Theorem | dmopab3 5857* | The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) | ||
| Theorem | dm0 5858 | The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ dom ∅ = ∅ | ||
| Theorem | dmi 5859 | The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ dom I = V | ||
| Theorem | dmv 5860 | The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.) |
| ⊢ dom V = V | ||
| Theorem | dmep 5861 | The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof shortened by BJ, 26-Dec-2023.) |
| ⊢ dom E = V | ||
| Theorem | dm0rn0 5862 | An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998.) |
| ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) | ||
| Theorem | rn0 5863 | The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) |
| ⊢ ran ∅ = ∅ | ||
| Theorem | rnep 5864 | The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023.) |
| ⊢ ran E = (V ∖ {∅}) | ||
| Theorem | reldm0 5865 | A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.) |
| ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) | ||
| Theorem | dmxp 5866 | The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2143, ax-11 2159, ax-12 2179. (Revised by SN, 12-Aug-2025.) |
| ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | ||
| Theorem | dmxpid 5867 | The domain of a Cartesian square. (Contributed by NM, 28-Jul-1995.) |
| ⊢ dom (𝐴 × 𝐴) = 𝐴 | ||
| Theorem | dmxpin 5868 | The domain of the intersection of two Cartesian squares. Unlike in dmin 5849, equality holds. (Contributed by NM, 29-Jan-2008.) |
| ⊢ dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴 ∩ 𝐵) | ||
| Theorem | xpid11 5869 | The Cartesian square is a one-to-one construction. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵) | ||
| Theorem | dmcnvcnv 5870 | The domain of the double converse of a class is equal to its domain (even when that class in not a relation, in which case dfrel2 6133 gives another proof). (Contributed by NM, 8-Apr-2007.) |
| ⊢ dom ◡◡𝐴 = dom 𝐴 | ||
| Theorem | rncnvcnv 5871 | The range of the double converse of a class is equal to its range (even when that class in not a relation). (Contributed by NM, 8-Apr-2007.) |
| ⊢ ran ◡◡𝐴 = ran 𝐴 | ||
| Theorem | elreldm 5872 | The first member of an ordered pair in a relation belongs to the domain of the relation (see op1stb 5409). (Contributed by NM, 28-Jul-2004.) |
| ⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵 ∈ dom 𝐴) | ||
| Theorem | rneq 5873 | Equality theorem for range. (Contributed by NM, 29-Dec-1996.) |
| ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | ||
| Theorem | rneqi 5874 | Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ran 𝐴 = ran 𝐵 | ||
| Theorem | rneqd 5875 | Equality deduction for range. (Contributed by NM, 4-Mar-2004.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ran 𝐴 = ran 𝐵) | ||
| Theorem | rnss 5876 | Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
| ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) | ||
| Theorem | rnssi 5877 | Subclass inference for range. (Contributed by Peter Mazsa, 24-Sep-2022.) |
| ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ran 𝐴 ⊆ ran 𝐵 | ||
| Theorem | brelrng 5878 | The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.) |
| ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) | ||
| Theorem | brelrn 5879 | The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) | ||
| Theorem | opelrn 5880 | Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ran 𝐶) | ||
| Theorem | releldm 5881 | The first argument of a binary relation belongs to its domain. Note that 𝐴𝑅𝐵 does not imply Rel 𝑅: see for example nrelv 5738 and brv 5410. (Contributed by NM, 2-Jul-2008.) |
| ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | ||
| Theorem | relelrn 5882 | The second argument of a binary relation belongs to its range. (Contributed by NM, 2-Jul-2008.) |
| ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅) | ||
| Theorem | releldmb 5883* | Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.) |
| ⊢ (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | ||
| Theorem | relelrnb 5884* | Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.) |
| ⊢ (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴)) | ||
| Theorem | releldmi 5885 | The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
| ⊢ Rel 𝑅 ⇒ ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) | ||
| Theorem | relelrni 5886 | The second argument of a binary relation belongs to its range. (Contributed by NM, 28-Apr-2015.) |
| ⊢ Rel 𝑅 ⇒ ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ ran 𝑅) | ||
| Theorem | dfrnf 5887* | Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | ||
| Theorem | nfdm 5888 | Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥dom 𝐴 | ||
| Theorem | nfrn 5889 | Bound-variable hypothesis builder for range. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥ran 𝐴 | ||
| Theorem | dmiin 5890 | Domain of an intersection. (Contributed by FL, 15-Oct-2012.) |
| ⊢ dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 | ||
| Theorem | rnopab 5891* | The range of a class of ordered pairs. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
| ⊢ ran {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑} | ||
| Theorem | rnopabss 5892* | Upper bound for the range of a restricted class of ordered pairs. (Contributed by Eric Schmidt, 16-Sep-2025.) |
| ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | ||
| Theorem | rnopab3 5893* | The range of a restricted class of ordered pairs. (Contributed by Eric Schmidt, 16-Sep-2025.) |
| ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥𝜑 ↔ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = 𝐴) | ||
| Theorem | rnmpt 5894* | The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} | ||
| Theorem | elrnmpt 5895* | The range of a function in maps-to notation. (Contributed by Mario Carneiro, 20-Feb-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) | ||
| Theorem | elrnmpt1s 5896* | Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) ⇒ ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) | ||
| Theorem | elrnmpt1 5897 | Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ ran 𝐹) | ||
| Theorem | elrnmptg 5898* | Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) | ||
| Theorem | elrnmpti 5899* | Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) | ||
| Theorem | elrnmptd 5900* | The range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |