| Metamath
Proof Explorer Theorem List (p. 59 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | xpindir 5801 | Distributive law for Cartesian product over intersection. Similar to Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.) |
| ⊢ ((𝐴 ∩ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶)) | ||
| Theorem | xpiindi 5802* | Distributive law for Cartesian product over indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐴 ≠ ∅ → (𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵)) | ||
| Theorem | xpriindi 5803* | Distributive law for Cartesian product over relativized indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐶 × (𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵)) | ||
| Theorem | eliunxp 5804* | Membership in a union of Cartesian products. Analogue of elxp 5664 for nonconstant 𝐵(𝑥). (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ (𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥∃𝑦(𝐶 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | ||
| Theorem | opeliunxp2 5805* | Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) ⇒ ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) | ||
| Theorem | raliunxp 5806* | Write a double restricted quantification as one universal quantifier. In this version of ralxp 5808, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) | ||
| Theorem | rexiunxp 5807* | Write a double restricted quantification as one universal quantifier. In this version of rexxp 5809, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) | ||
| Theorem | ralxp 5808* | Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) | ||
| Theorem | rexxp 5809* | Existential quantification restricted to a Cartesian product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995.) (Revised by Mario Carneiro, 14-Feb-2015.) |
| ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) | ||
| Theorem | exopxfr 5810* | Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦∃𝑧𝜓) | ||
| Theorem | exopxfr2 5811* | Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) |
| ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (Rel 𝐴 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑧(〈𝑦, 𝑧〉 ∈ 𝐴 ∧ 𝜓))) | ||
| Theorem | djussxp 5812* | Disjoint union is a subset of a Cartesian product. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) | ||
| Theorem | ralxpf 5813* | Version of ralxp 5808 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 𝜓) | ||
| Theorem | rexxpf 5814* | Version of rexxp 5809 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) | ||
| Theorem | iunxpf 5815* | Indexed union on a Cartesian product equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.) |
| ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) ⇒ ⊢ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 | ||
| Theorem | opabbi2dv 5816* | Deduce equality of a relation and an ordered-pair class abstraction. Compare eqabdv 2862. (Contributed by NM, 24-Feb-2014.) |
| ⊢ Rel 𝐴 & ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 𝜓)) ⇒ ⊢ (𝜑 → 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜓}) | ||
| Theorem | relop 5817* | A necessary and sufficient condition for a Kuratowski ordered pair to be a relation. (Contributed by NM, 3-Jun-2008.) A relation is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a relation is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is relsnopg 5769, as funsng 6570 is to funop 7124. (New usage is discouraged.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (Rel 〈𝐴, 𝐵〉 ↔ ∃𝑥∃𝑦(𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦})) | ||
| Theorem | ideqg 5818 | For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | ideq 5819 | For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) | ||
| Theorem | ididg 5820 | A set is identical to itself. (Contributed by NM, 28-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 I 𝐴) | ||
| Theorem | issetid 5821 | Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐴 ∈ V ↔ 𝐴 I 𝐴) | ||
| Theorem | coss1 5822 | Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) | ||
| Theorem | coss2 5823 | Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | ||
| Theorem | coeq1 5824 | Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | ||
| Theorem | coeq2 5825 | Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | ||
| Theorem | coeq1i 5826 | Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) | ||
| Theorem | coeq2i 5827 | Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) | ||
| Theorem | coeq1d 5828 | Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | ||
| Theorem | coeq2d 5829 | Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | ||
| Theorem | coeq12i 5830 | Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) | ||
| Theorem | coeq12d 5831 | Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷)) | ||
| Theorem | nfco 5832 | Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∘ 𝐵) | ||
| Theorem | brcog 5833* | Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | ||
| Theorem | opelco2g 5834* | Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐷 ∧ 〈𝑥, 𝐵〉 ∈ 𝐶))) | ||
| Theorem | brcogw 5835 | Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) | ||
| Theorem | eqbrrdva 5836* | Deduction from extensionality principle for relations, given an equivalence only on the relation domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ (𝐶 × 𝐷)) & ⊢ (𝜑 → 𝐵 ⊆ (𝐶 × 𝐷)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | brco 5837* | Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) | ||
| Theorem | opelco 5838* | Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) | ||
| Theorem | cnvss 5839 | Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.) |
| ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | ||
| Theorem | cnveq 5840 | Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995.) |
| ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | ||
| Theorem | cnveqi 5841 | Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ◡𝐴 = ◡𝐵 | ||
| Theorem | cnveqd 5842 | Equality deduction for converse relation. (Contributed by NM, 6-Dec-2013.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ◡𝐴 = ◡𝐵) | ||
| Theorem | elcnv 5843* | Membership in a converse relation. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.) |
| ⊢ (𝐴 ∈ ◡𝑅 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑦𝑅𝑥)) | ||
| Theorem | elcnv2 5844* | Membership in a converse relation. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.) |
| ⊢ (𝐴 ∈ ◡𝑅 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 〈𝑦, 𝑥〉 ∈ 𝑅)) | ||
| Theorem | nfcnv 5845 | Bound-variable hypothesis builder for converse relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥◡𝐴 | ||
| Theorem | brcnvg 5846 | The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | ||
| Theorem | opelcnvg 5847 | Ordered-pair membership in converse relation. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) | ||
| Theorem | opelcnv 5848 | Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) | ||
| Theorem | brcnv 5849 | The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) | ||
| Theorem | csbcnv 5850 | Move class substitution in and out of the converse of a relation. Version of csbcnvgALT 5851 without a sethood antecedent but depending on more axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (Revised by NM, 23-Aug-2018.) |
| ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹 | ||
| Theorem | csbcnvgALT 5851 | Move class substitution in and out of the converse of a relation. Version of csbcnv 5850 with a sethood antecedent but depending on fewer axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹) | ||
| Theorem | cnvco 5852 | Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | ||
| Theorem | cnvuni 5853* | The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.) |
| ⊢ ◡∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ◡𝑥 | ||
| Theorem | dfdm3 5854* | Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
| ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴} | ||
| Theorem | dfrn2 5855* | Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.) |
| ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | ||
| Theorem | dfrn3 5856* | Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
| ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | ||
| Theorem | elrn2g 5857* | Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) | ||
| Theorem | elrng 5858* | Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) | ||
| Theorem | elrn2 5859* | Membership in a range. (Contributed by NM, 10-Jul-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) | ||
| Theorem | elrn 5860* | Membership in a range. (Contributed by NM, 2-Apr-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) | ||
| Theorem | ssrelrn 5861* | If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.) |
| ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎 ∈ 𝐴 𝑎𝑅𝑌) | ||
| Theorem | dfdm4 5862 | Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
| ⊢ dom 𝐴 = ran ◡𝐴 | ||
| Theorem | dfdmf 5863* | Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | ||
| Theorem | csbdm 5864 | Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017.) (Revised by NM, 24-Aug-2018.) |
| ⊢ ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵 | ||
| Theorem | eldmg 5865* | Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | ||
| Theorem | eldm2g 5866* | Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) | ||
| Theorem | eldm 5867* | Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) | ||
| Theorem | eldm2 5868* | Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) | ||
| Theorem | dmss 5869 | Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) | ||
| Theorem | dmeq 5870 | Equality theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | ||
| Theorem | dmeqi 5871 | Equality inference for domain. (Contributed by NM, 4-Mar-2004.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ dom 𝐴 = dom 𝐵 | ||
| Theorem | dmeqd 5872 | Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → dom 𝐴 = dom 𝐵) | ||
| Theorem | opeldmd 5873 | Membership of first of an ordered pair in a domain. Deduction version of opeldm 5874. (Contributed by AV, 11-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) | ||
| Theorem | opeldm 5874 | Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) | ||
| Theorem | breldm 5875 | Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) | ||
| Theorem | breldmg 5876 | Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | ||
| Theorem | dmun 5877 | The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) | ||
| Theorem | dmin 5878 | The domain of an intersection is included in the intersection of the domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
| ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) | ||
| Theorem | breldmd 5879 | Membership of first of a binary relation in a domain. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) | ||
| Theorem | dmiun 5880 | The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 dom 𝐵 | ||
| Theorem | dmuni 5881* | The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.) |
| ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 | ||
| Theorem | dmopab 5882* | The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
| ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} | ||
| Theorem | dmopabelb 5883* | A set is an element of the domain of an ordered pair class abstraction iff there is a second set so that both sets fulfil the wff of the class abstraction. (Contributed by AV, 19-Oct-2023.) |
| ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ dom {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑦𝜓)) | ||
| Theorem | dmopab2rex 5884* | The domain of an ordered pair class abstraction with two nested restricted existential quantifiers. (Contributed by AV, 23-Oct-2023.) |
| ⊢ (∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑉 𝐵 ∈ 𝑋 ∧ ∀𝑖 ∈ 𝐼 𝐷 ∈ 𝑊) → dom {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 (𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑥 = 𝐶 ∧ 𝑦 = 𝐷))} = {𝑥 ∣ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 𝑥 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑥 = 𝐶)}) | ||
| Theorem | dmopabss 5885* | Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
| ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | ||
| Theorem | dmopab3 5886* | The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) | ||
| Theorem | dm0 5887 | The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ dom ∅ = ∅ | ||
| Theorem | dmi 5888 | The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ dom I = V | ||
| Theorem | dmv 5889 | The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.) |
| ⊢ dom V = V | ||
| Theorem | dmep 5890 | The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof shortened by BJ, 26-Dec-2023.) |
| ⊢ dom E = V | ||
| Theorem | dm0rn0 5891 | An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998.) |
| ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) | ||
| Theorem | rn0 5892 | The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) |
| ⊢ ran ∅ = ∅ | ||
| Theorem | rnep 5893 | The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023.) |
| ⊢ ran E = (V ∖ {∅}) | ||
| Theorem | reldm0 5894 | A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.) |
| ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) | ||
| Theorem | dmxp 5895 | The domain of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 12-Aug-2025.) |
| ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | ||
| Theorem | dmxpOLD 5896 | Obsolete version of dmxp 5895 as of 19-Dec-2024. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | ||
| Theorem | dmxpid 5897 | The domain of a Cartesian square. (Contributed by NM, 28-Jul-1995.) |
| ⊢ dom (𝐴 × 𝐴) = 𝐴 | ||
| Theorem | dmxpin 5898 | The domain of the intersection of two Cartesian squares. Unlike in dmin 5878, equality holds. (Contributed by NM, 29-Jan-2008.) |
| ⊢ dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴 ∩ 𝐵) | ||
| Theorem | xpid11 5899 | The Cartesian square is a one-to-one construction. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵) | ||
| Theorem | dmcnvcnv 5900 | The domain of the double converse of a class is equal to its domain (even when that class in not a relation, in which case dfrel2 6165 gives another proof). (Contributed by NM, 8-Apr-2007.) |
| ⊢ dom ◡◡𝐴 = dom 𝐴 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |