Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmrab Structured version   Visualization version   GIF version

Theorem dmrab 32426
Description: Domain of a restricted class abstraction over a cartesian product. (Contributed by Thierry Arnoux, 3-Jul-2023.)
Hypothesis
Ref Expression
dmrab.1 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
dmrab dom {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {𝑥𝐴 ∣ ∃𝑦𝐵 𝜓}
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑦)

Proof of Theorem dmrab
StepHypRef Expression
1 dmrab.1 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
21elrab 3659 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ 𝜓))
3 opelxp 5674 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
43anbi1i 624 . . . . . . . 8 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ 𝜓) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝜓))
5 ancom 460 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) ↔ (𝑦𝐵𝑥𝐴))
65anbi1i 624 . . . . . . . 8 (((𝑥𝐴𝑦𝐵) ∧ 𝜓) ↔ ((𝑦𝐵𝑥𝐴) ∧ 𝜓))
72, 4, 63bitri 297 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} ↔ ((𝑦𝐵𝑥𝐴) ∧ 𝜓))
8 anass 468 . . . . . . 7 (((𝑦𝐵𝑥𝐴) ∧ 𝜓) ↔ (𝑦𝐵 ∧ (𝑥𝐴𝜓)))
9 ancom 460 . . . . . . . 8 ((𝑥𝐴𝜓) ↔ (𝜓𝑥𝐴))
109anbi2i 623 . . . . . . 7 ((𝑦𝐵 ∧ (𝑥𝐴𝜓)) ↔ (𝑦𝐵 ∧ (𝜓𝑥𝐴)))
117, 8, 103bitri 297 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} ↔ (𝑦𝐵 ∧ (𝜓𝑥𝐴)))
1211exbii 1848 . . . . 5 (∃𝑦𝑥, 𝑦⟩ ∈ {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} ↔ ∃𝑦(𝑦𝐵 ∧ (𝜓𝑥𝐴)))
13 df-rex 3054 . . . . 5 (∃𝑦𝐵 (𝜓𝑥𝐴) ↔ ∃𝑦(𝑦𝐵 ∧ (𝜓𝑥𝐴)))
14 r19.41v 3167 . . . . 5 (∃𝑦𝐵 (𝜓𝑥𝐴) ↔ (∃𝑦𝐵 𝜓𝑥𝐴))
1512, 13, 143bitr2i 299 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} ↔ (∃𝑦𝐵 𝜓𝑥𝐴))
1615biancomi 462 . . 3 (∃𝑦𝑥, 𝑦⟩ ∈ {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 𝜓))
1716abbii 2796 . 2 {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑}} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝐵 𝜓)}
18 dfdm3 5851 . 2 dom {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑}}
19 df-rab 3406 . 2 {𝑥𝐴 ∣ ∃𝑦𝐵 𝜓} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝐵 𝜓)}
2017, 18, 193eqtr4i 2762 1 dom {𝑧 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {𝑥𝐴 ∣ ∃𝑦𝐵 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wrex 3053  {crab 3405  cop 4595   × cxp 5636  dom cdm 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-dm 5648
This theorem is referenced by:  fedgmullem2  33626
  Copyright terms: Public domain W3C validator