MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-dm Structured version   Visualization version   GIF version

Definition df-dm 5629
Description: Define the domain of a class. Definition 3 of [Suppes] p. 59. For example, 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → dom 𝐹 = {2, 3} (ex-dm 30421). Another example is the domain of the complex arctangent, (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) (for proof see atandm 26814). Contrast with range (defined in df-rn 5630). For alternate definitions see dfdm2 6233, dfdm3 5831, and dfdm4 5839. The notation "dom " is used by Enderton; other authors sometimes use script D. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-dm dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦,𝐴

Detailed syntax breakdown of Definition df-dm
StepHypRef Expression
1 cA . . 3 class 𝐴
21cdm 5619 . 2 class dom 𝐴
3 vx . . . . . 6 setvar 𝑥
43cv 1540 . . . . 5 class 𝑥
5 vy . . . . . 6 setvar 𝑦
65cv 1540 . . . . 5 class 𝑦
74, 6, 1wbr 5093 . . . 4 wff 𝑥𝐴𝑦
87, 5wex 1780 . . 3 wff 𝑦 𝑥𝐴𝑦
98, 3cab 2711 . 2 class {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
102, 9wceq 1541 1 wff dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Colors of variables: wff setvar class
This definition is referenced by:  dfdm3  5831  dfrn2  5832  dfdm4  5839  dfdmf  5840  eldmg  5842  dmun  5854  dm0rn0  5868  dm0rn0OLD  5869  nfdm  5895  fliftf  7255  opabdm  32596  dmxrn  38431  dmcnvep  38432  rncossdmcoss  38577  dfatco  47380
  Copyright terms: Public domain W3C validator