MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-dm Structured version   Visualization version   GIF version

Definition df-dm 5626
Description: Define the domain of a class. Definition 3 of [Suppes] p. 59. For example, 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → dom 𝐹 = {2, 3} (ex-dm 30414). Another example is the domain of the complex arctangent, (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) (for proof see atandm 26811). Contrast with range (defined in df-rn 5627). For alternate definitions see dfdm2 6228, dfdm3 5827, and dfdm4 5835. The notation "dom " is used by Enderton; other authors sometimes use script D. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-dm dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦,𝐴

Detailed syntax breakdown of Definition df-dm
StepHypRef Expression
1 cA . . 3 class 𝐴
21cdm 5616 . 2 class dom 𝐴
3 vx . . . . . 6 setvar 𝑥
43cv 1540 . . . . 5 class 𝑥
5 vy . . . . . 6 setvar 𝑦
65cv 1540 . . . . 5 class 𝑦
74, 6, 1wbr 5091 . . . 4 wff 𝑥𝐴𝑦
87, 5wex 1780 . . 3 wff 𝑦 𝑥𝐴𝑦
98, 3cab 2709 . 2 class {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
102, 9wceq 1541 1 wff dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Colors of variables: wff setvar class
This definition is referenced by:  dfdm3  5827  dfrn2  5828  dfdm4  5835  dfdmf  5836  eldmg  5838  dmun  5850  dm0rn0  5864  dm0rn0OLD  5865  nfdm  5891  fliftf  7249  opabdm  32589  dmxrn  38405  dmcnvep  38406  rncossdmcoss  38491  dfatco  47286
  Copyright terms: Public domain W3C validator