![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfifd | Structured version Visualization version GIF version |
Description: Deduction form of nfif 4520. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
nfifd.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
nfifd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfifd.4 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfifd | ⊢ (𝜑 → Ⅎ𝑥if(𝜓, 𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfif2 4492 | . 2 ⊢ if(𝜓, 𝐴, 𝐵) = {𝑦 ∣ ((𝑦 ∈ 𝐵 → 𝜓) → (𝑦 ∈ 𝐴 ∧ 𝜓))} | |
2 | nfv 1918 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfifd.4 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
4 | 3 | nfcrd 2893 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
5 | nfifd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
6 | 4, 5 | nfimd 1898 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐵 → 𝜓)) |
7 | nfifd.3 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
8 | 7 | nfcrd 2893 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
9 | 8, 5 | nfand 1901 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓)) |
10 | 6, 9 | nfimd 1898 | . . 3 ⊢ (𝜑 → Ⅎ𝑥((𝑦 ∈ 𝐵 → 𝜓) → (𝑦 ∈ 𝐴 ∧ 𝜓))) |
11 | 2, 10 | nfabdw 2927 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ ((𝑦 ∈ 𝐵 → 𝜓) → (𝑦 ∈ 𝐴 ∧ 𝜓))}) |
12 | 1, 11 | nfcxfrd 2903 | 1 ⊢ (𝜑 → Ⅎ𝑥if(𝜓, 𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 Ⅎwnf 1786 ∈ wcel 2107 {cab 2710 Ⅎwnfc 2884 ifcif 4490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-if 4491 |
This theorem is referenced by: nfif 4520 nfxnegd 43766 |
Copyright terms: Public domain | W3C validator |