![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ab0ALT | Structured version Visualization version GIF version |
Description: Alternate proof of ab0 4402, shorter but using more axioms. (Contributed by BJ, 19-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ab0ALT | ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab1 2910 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
2 | 1 | eq0f 4370 | . 2 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ {𝑥 ∣ 𝜑}) |
3 | abid 2721 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
4 | 3 | notbii 320 | . . 3 ⊢ (¬ 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ¬ 𝜑) |
5 | 4 | albii 1817 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥 ¬ 𝜑) |
6 | 2, 5 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 {cab 2717 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-dif 3979 df-nul 4353 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |