| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ab0ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of ab0 4330, shorter but using more axioms. (Contributed by BJ, 19-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ab0ALT | ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab1 2896 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 2 | 1 | eq0f 4297 | . 2 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ {𝑥 ∣ 𝜑}) |
| 3 | abid 2713 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 4 | 3 | notbii 320 | . . 3 ⊢ (¬ 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ¬ 𝜑) |
| 5 | 4 | albii 1820 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥 ¬ 𝜑) |
| 6 | 2, 5 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2111 {cab 2709 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-dif 3905 df-nul 4284 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |