MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab0ALT Structured version   Visualization version   GIF version

Theorem ab0ALT 4378
Description: Alternate proof of ab0 4376, shorter but using more axioms. (Contributed by BJ, 19-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ab0ALT ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)

Proof of Theorem ab0ALT
StepHypRef Expression
1 nfab1 2900 . . 3 𝑥{𝑥𝜑}
21eq0f 4342 . 2 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ {𝑥𝜑})
3 abid 2708 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
43notbii 319 . . 3 𝑥 ∈ {𝑥𝜑} ↔ ¬ 𝜑)
54albii 1813 . 2 (∀𝑥 ¬ 𝑥 ∈ {𝑥𝜑} ↔ ∀𝑥 ¬ 𝜑)
62, 5bitri 274 1 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1531   = wceq 1533  wcel 2098  {cab 2704  c0 4324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-dif 3950  df-nul 4325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator