MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab0ALT Structured version   Visualization version   GIF version

Theorem ab0ALT 4404
Description: Alternate proof of ab0 4402, shorter but using more axioms. (Contributed by BJ, 19-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ab0ALT ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)

Proof of Theorem ab0ALT
StepHypRef Expression
1 nfab1 2910 . . 3 𝑥{𝑥𝜑}
21eq0f 4370 . 2 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ {𝑥𝜑})
3 abid 2721 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
43notbii 320 . . 3 𝑥 ∈ {𝑥𝜑} ↔ ¬ 𝜑)
54albii 1817 . 2 (∀𝑥 ¬ 𝑥 ∈ {𝑥𝜑} ↔ ∀𝑥 ¬ 𝜑)
62, 5bitri 275 1 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1535   = wceq 1537  wcel 2108  {cab 2717  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-dif 3979  df-nul 4353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator