MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab0ALT Structured version   Visualization version   GIF version

Theorem ab0ALT 4307
Description: Alternate proof of ab0 4305, shorter but using more axioms. (Contributed by BJ, 19-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ab0ALT ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)

Proof of Theorem ab0ALT
StepHypRef Expression
1 nfab1 2908 . . 3 𝑥{𝑥𝜑}
21eq0f 4271 . 2 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ {𝑥𝜑})
3 abid 2719 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
43notbii 319 . . 3 𝑥 ∈ {𝑥𝜑} ↔ ¬ 𝜑)
54albii 1823 . 2 (∀𝑥 ¬ 𝑥 ∈ {𝑥𝜑} ↔ ∀𝑥 ¬ 𝜑)
62, 5bitri 274 1 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537   = wceq 1539  wcel 2108  {cab 2715  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-dif 3886  df-nul 4254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator