Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ab0ALT | Structured version Visualization version GIF version |
Description: Alternate proof of ab0 4305, shorter but using more axioms. (Contributed by BJ, 19-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ab0ALT | ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab1 2908 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
2 | 1 | eq0f 4271 | . 2 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ {𝑥 ∣ 𝜑}) |
3 | abid 2719 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
4 | 3 | notbii 319 | . . 3 ⊢ (¬ 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ¬ 𝜑) |
5 | 4 | albii 1823 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥 ¬ 𝜑) |
6 | 2, 5 | bitri 274 | 1 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2108 {cab 2715 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-dif 3886 df-nul 4254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |