MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnul3OLD Structured version   Visualization version   GIF version

Theorem dfnul3OLD 4358
Description: Obsolete version of dfnul4 4354 as of 23-Sep-2024. (Contributed by NM, 25-Mar-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dfnul3OLD ∅ = {𝑥𝐴 ∣ ¬ 𝑥𝐴}

Proof of Theorem dfnul3OLD
StepHypRef Expression
1 pm3.24 402 . . . . 5 ¬ (𝑥𝐴 ∧ ¬ 𝑥𝐴)
2 equid 2011 . . . . 5 𝑥 = 𝑥
31, 22th 264 . . . 4 (¬ (𝑥𝐴 ∧ ¬ 𝑥𝐴) ↔ 𝑥 = 𝑥)
43con1bii 356 . . 3 𝑥 = 𝑥 ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐴))
54abbii 2812 . 2 {𝑥 ∣ ¬ 𝑥 = 𝑥} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐴)}
6 dfnul2 4355 . 2 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
7 df-rab 3444 . 2 {𝑥𝐴 ∣ ¬ 𝑥𝐴} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐴)}
85, 6, 73eqtr4i 2778 1 ∅ = {𝑥𝐴 ∣ ¬ 𝑥𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wcel 2108  {cab 2717  {crab 3443  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-rab 3444  df-dif 3979  df-nul 4353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator