![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfnul3OLD | Structured version Visualization version GIF version |
Description: Obsolete version of dfnul4 4323 as of 23-Sep-2024. (Contributed by NM, 25-Mar-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfnul3OLD | ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.24 401 | . . . . 5 ⊢ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴) | |
2 | equid 2013 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
3 | 1, 2 | 2th 263 | . . . 4 ⊢ (¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴) ↔ 𝑥 = 𝑥) |
4 | 3 | con1bii 355 | . . 3 ⊢ (¬ 𝑥 = 𝑥 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)) |
5 | 4 | abbii 2800 | . 2 ⊢ {𝑥 ∣ ¬ 𝑥 = 𝑥} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)} |
6 | dfnul2 4324 | . 2 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | |
7 | df-rab 3431 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)} | |
8 | 5, 6, 7 | 3eqtr4i 2768 | 1 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 394 = wceq 1539 ∈ wcel 2104 {cab 2707 {crab 3430 ∅c0 4321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-rab 3431 df-dif 3950 df-nul 4322 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |