| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > petidres | Structured version Visualization version GIF version | ||
| Description: A class is a partition by identity class restricted to it if and only if the cosets by the restricted identity class are in equivalence relation on it, cf. eqvrel1cossidres 38732. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| Ref | Expression |
|---|---|
| petidres | ⊢ (( I ↾ 𝐴) Part 𝐴 ↔ ≀ ( I ↾ 𝐴) ErALTV 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | petidres2 38760 | . 2 ⊢ (( Disj ( I ↾ 𝐴) ∧ (dom ( I ↾ 𝐴) / ( I ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ≀ ( I ↾ 𝐴) ∧ (dom ≀ ( I ↾ 𝐴) / ≀ ( I ↾ 𝐴)) = 𝐴)) | |
| 2 | dfpart2 38711 | . 2 ⊢ (( I ↾ 𝐴) Part 𝐴 ↔ ( Disj ( I ↾ 𝐴) ∧ (dom ( I ↾ 𝐴) / ( I ↾ 𝐴)) = 𝐴)) | |
| 3 | dferALTV2 38610 | . 2 ⊢ ( ≀ ( I ↾ 𝐴) ErALTV 𝐴 ↔ ( EqvRel ≀ ( I ↾ 𝐴) ∧ (dom ≀ ( I ↾ 𝐴) / ≀ ( I ↾ 𝐴)) = 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (( I ↾ 𝐴) Part 𝐴 ↔ ≀ ( I ↾ 𝐴) ErALTV 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 I cid 5559 dom cdm 5667 ↾ cres 5669 / cqs 8727 ≀ ccoss 38123 EqvRel weqvrel 38140 ErALTV werALTV 38149 Disj wdisjALTV 38157 Part wpart 38162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rmo 3364 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ec 8730 df-qs 8734 df-coss 38353 df-refrel 38454 df-cnvrefrel 38469 df-symrel 38486 df-trrel 38516 df-eqvrel 38527 df-dmqs 38581 df-erALTV 38606 df-funALTV 38624 df-disjALTV 38647 df-part 38708 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |