Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  petidres Structured version   Visualization version   GIF version

Theorem petidres 37039
Description: A class is a partition by identity class restricted to it if and only if the cosets by the restricted identity class are in equivalence relation on it, cf. eqvrel1cossidres 37010. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
petidres (( I ↾ 𝐴) Part 𝐴 ↔ ≀ ( I ↾ 𝐴) ErALTV 𝐴)

Proof of Theorem petidres
StepHypRef Expression
1 petidres2 37038 . 2 (( Disj ( I ↾ 𝐴) ∧ (dom ( I ↾ 𝐴) / ( I ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ≀ ( I ↾ 𝐴) ∧ (dom ≀ ( I ↾ 𝐴) / ≀ ( I ↾ 𝐴)) = 𝐴))
2 dfpart2 36989 . 2 (( I ↾ 𝐴) Part 𝐴 ↔ ( Disj ( I ↾ 𝐴) ∧ (dom ( I ↾ 𝐴) / ( I ↾ 𝐴)) = 𝐴))
3 dferALTV2 36888 . 2 ( ≀ ( I ↾ 𝐴) ErALTV 𝐴 ↔ ( EqvRel ≀ ( I ↾ 𝐴) ∧ (dom ≀ ( I ↾ 𝐴) / ≀ ( I ↾ 𝐴)) = 𝐴))
41, 2, 33bitr4i 303 1 (( I ↾ 𝐴) Part 𝐴 ↔ ≀ ( I ↾ 𝐴) ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1539   I cid 5499  dom cdm 5600  cres 5602   / cqs 8528  ccoss 36387   EqvRel weqvrel 36404   ErALTV werALTV 36413   Disj wdisjALTV 36421   Part wpart 36426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rmo 3339  df-rab 3341  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531  df-qs 8535  df-coss 36631  df-refrel 36732  df-cnvrefrel 36747  df-symrel 36764  df-trrel 36794  df-eqvrel 36805  df-dmqs 36859  df-erALTV 36884  df-funALTV 36902  df-disjALTV 36925  df-part 36986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator