| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pet0 | Structured version Visualization version GIF version | ||
| Description: Class 𝐴 is a partition by the null class if and only if the cosets by the null class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| Ref | Expression |
|---|---|
| pet0 | ⊢ (∅ Part 𝐴 ↔ ≀ ∅ ErALTV 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pet02 38852 | . 2 ⊢ (( Disj ∅ ∧ (dom ∅ / ∅) = 𝐴) ↔ ( EqvRel ≀ ∅ ∧ (dom ≀ ∅ / ≀ ∅) = 𝐴)) | |
| 2 | dfpart2 38807 | . 2 ⊢ (∅ Part 𝐴 ↔ ( Disj ∅ ∧ (dom ∅ / ∅) = 𝐴)) | |
| 3 | dferALTV2 38706 | . 2 ⊢ ( ≀ ∅ ErALTV 𝐴 ↔ ( EqvRel ≀ ∅ ∧ (dom ≀ ∅ / ≀ ∅) = 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (∅ Part 𝐴 ↔ ≀ ∅ ErALTV 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∅c0 4278 dom cdm 5611 / cqs 8616 ≀ ccoss 38215 EqvRel weqvrel 38232 ErALTV werALTV 38241 Disj wdisjALTV 38249 Part wpart 38254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ec 8619 df-qs 8623 df-coss 38448 df-refrel 38549 df-cnvrefrel 38564 df-symrel 38581 df-trrel 38611 df-eqvrel 38622 df-dmqs 38676 df-erALTV 38702 df-disjALTV 38743 df-part 38804 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |