Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pet0 Structured version   Visualization version   GIF version

Theorem pet0 38780
Description: Class 𝐴 is a partition by the null class if and only if the cosets by the null class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
pet0 (∅ Part 𝐴 ↔ ≀ ∅ ErALTV 𝐴)

Proof of Theorem pet0
StepHypRef Expression
1 pet02 38779 . 2 (( Disj ∅ ∧ (dom ∅ / ∅) = 𝐴) ↔ ( EqvRel ≀ ∅ ∧ (dom ≀ ∅ / ≀ ∅) = 𝐴))
2 dfpart2 38734 . 2 (∅ Part 𝐴 ↔ ( Disj ∅ ∧ (dom ∅ / ∅) = 𝐴))
3 dferALTV2 38633 . 2 ( ≀ ∅ ErALTV 𝐴 ↔ ( EqvRel ≀ ∅ ∧ (dom ≀ ∅ / ≀ ∅) = 𝐴))
41, 2, 33bitr4i 303 1 (∅ Part 𝐴 ↔ ≀ ∅ ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  c0 4292  dom cdm 5631   / cqs 8647  ccoss 38142   EqvRel weqvrel 38159   ErALTV werALTV 38168   Disj wdisjALTV 38176   Part wpart 38181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rmo 3351  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ec 8650  df-qs 8654  df-coss 38375  df-refrel 38476  df-cnvrefrel 38491  df-symrel 38508  df-trrel 38538  df-eqvrel 38549  df-dmqs 38603  df-erALTV 38629  df-disjALTV 38670  df-part 38731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator