Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pet0 Structured version   Visualization version   GIF version

Theorem pet0 38853
Description: Class 𝐴 is a partition by the null class if and only if the cosets by the null class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
pet0 (∅ Part 𝐴 ↔ ≀ ∅ ErALTV 𝐴)

Proof of Theorem pet0
StepHypRef Expression
1 pet02 38852 . 2 (( Disj ∅ ∧ (dom ∅ / ∅) = 𝐴) ↔ ( EqvRel ≀ ∅ ∧ (dom ≀ ∅ / ≀ ∅) = 𝐴))
2 dfpart2 38807 . 2 (∅ Part 𝐴 ↔ ( Disj ∅ ∧ (dom ∅ / ∅) = 𝐴))
3 dferALTV2 38706 . 2 ( ≀ ∅ ErALTV 𝐴 ↔ ( EqvRel ≀ ∅ ∧ (dom ≀ ∅ / ≀ ∅) = 𝐴))
41, 2, 33bitr4i 303 1 (∅ Part 𝐴 ↔ ≀ ∅ ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  c0 4278  dom cdm 5611   / cqs 8616  ccoss 38215   EqvRel weqvrel 38232   ErALTV werALTV 38241   Disj wdisjALTV 38249   Part wpart 38254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rmo 3346  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ec 8619  df-qs 8623  df-coss 38448  df-refrel 38549  df-cnvrefrel 38564  df-symrel 38581  df-trrel 38611  df-eqvrel 38622  df-dmqs 38676  df-erALTV 38702  df-disjALTV 38743  df-part 38804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator