Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pet0 Structured version   Visualization version   GIF version

Theorem pet0 38800
Description: Class 𝐴 is a partition by the null class if and only if the cosets by the null class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
pet0 (∅ Part 𝐴 ↔ ≀ ∅ ErALTV 𝐴)

Proof of Theorem pet0
StepHypRef Expression
1 pet02 38799 . 2 (( Disj ∅ ∧ (dom ∅ / ∅) = 𝐴) ↔ ( EqvRel ≀ ∅ ∧ (dom ≀ ∅ / ≀ ∅) = 𝐴))
2 dfpart2 38754 . 2 (∅ Part 𝐴 ↔ ( Disj ∅ ∧ (dom ∅ / ∅) = 𝐴))
3 dferALTV2 38653 . 2 ( ≀ ∅ ErALTV 𝐴 ↔ ( EqvRel ≀ ∅ ∧ (dom ≀ ∅ / ≀ ∅) = 𝐴))
41, 2, 33bitr4i 303 1 (∅ Part 𝐴 ↔ ≀ ∅ ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  c0 4304  dom cdm 5646   / cqs 8681  ccoss 38166   EqvRel weqvrel 38183   ErALTV werALTV 38192   Disj wdisjALTV 38200   Part wpart 38205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rmo 3357  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-ec 8684  df-qs 8688  df-coss 38396  df-refrel 38497  df-cnvrefrel 38512  df-symrel 38529  df-trrel 38559  df-eqvrel 38570  df-dmqs 38624  df-erALTV 38649  df-disjALTV 38690  df-part 38751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator