| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pet0 | Structured version Visualization version GIF version | ||
| Description: Class 𝐴 is a partition by the null class if and only if the cosets by the null class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| Ref | Expression |
|---|---|
| pet0 | ⊢ (∅ Part 𝐴 ↔ ≀ ∅ ErALTV 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pet02 38799 | . 2 ⊢ (( Disj ∅ ∧ (dom ∅ / ∅) = 𝐴) ↔ ( EqvRel ≀ ∅ ∧ (dom ≀ ∅ / ≀ ∅) = 𝐴)) | |
| 2 | dfpart2 38754 | . 2 ⊢ (∅ Part 𝐴 ↔ ( Disj ∅ ∧ (dom ∅ / ∅) = 𝐴)) | |
| 3 | dferALTV2 38653 | . 2 ⊢ ( ≀ ∅ ErALTV 𝐴 ↔ ( EqvRel ≀ ∅ ∧ (dom ≀ ∅ / ≀ ∅) = 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (∅ Part 𝐴 ↔ ≀ ∅ ErALTV 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∅c0 4304 dom cdm 5646 / cqs 8681 ≀ ccoss 38166 EqvRel weqvrel 38183 ErALTV werALTV 38192 Disj wdisjALTV 38200 Part wpart 38205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-rmo 3357 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-ec 8684 df-qs 8688 df-coss 38396 df-refrel 38497 df-cnvrefrel 38512 df-symrel 38529 df-trrel 38559 df-eqvrel 38570 df-dmqs 38624 df-erALTV 38649 df-disjALTV 38690 df-part 38751 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |