| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > petinidres | Structured version Visualization version GIF version | ||
| Description: A class is a partition by an intersection with the identity class restricted to it if and only if the cosets by the intersection are in equivalence relation on it. Cf. br1cossinidres 38433, disjALTVinidres 38742 and eqvrel1cossinidres 38776. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| Ref | Expression |
|---|---|
| petinidres | ⊢ ((𝑅 ∩ ( I ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ ( I ↾ 𝐴)) ErALTV 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | petinidres2 38805 | . 2 ⊢ (( Disj (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom (𝑅 ∩ ( I ↾ 𝐴)) / (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ ( I ↾ 𝐴)) / ≀ (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴)) | |
| 2 | dfpart2 38754 | . 2 ⊢ ((𝑅 ∩ ( I ↾ 𝐴)) Part 𝐴 ↔ ( Disj (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom (𝑅 ∩ ( I ↾ 𝐴)) / (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴)) | |
| 3 | dferALTV2 38653 | . 2 ⊢ ( ≀ (𝑅 ∩ ( I ↾ 𝐴)) ErALTV 𝐴 ↔ ( EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ ( I ↾ 𝐴)) / ≀ (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ((𝑅 ∩ ( I ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ ( I ↾ 𝐴)) ErALTV 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∩ cin 3910 I cid 5525 dom cdm 5631 ↾ cres 5633 / cqs 8647 ≀ ccoss 38162 EqvRel weqvrel 38179 ErALTV werALTV 38188 Disj wdisjALTV 38196 Part wpart 38201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rmo 3351 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ec 8650 df-qs 8654 df-coss 38395 df-refrel 38496 df-cnvrefrel 38511 df-symrel 38528 df-trrel 38558 df-eqvrel 38569 df-dmqs 38623 df-erALTV 38649 df-funALTV 38667 df-disjALTV 38690 df-part 38751 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |