Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > petinidres | Structured version Visualization version GIF version |
Description: A class is a partition by an intersection with the identity class restricted to it if and only if the cosets by the intersection are in equivalence relation on it. Cf. br1cossinidres 36669, disjALTVinidres 36977 and eqvrel1cossinidres 37011. (Contributed by Peter Mazsa, 31-Dec-2021.) |
Ref | Expression |
---|---|
petinidres | ⊢ ((𝑅 ∩ ( I ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ ( I ↾ 𝐴)) ErALTV 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | petinidres2 37040 | . 2 ⊢ (( Disj (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom (𝑅 ∩ ( I ↾ 𝐴)) / (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ ( I ↾ 𝐴)) / ≀ (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴)) | |
2 | dfpart2 36989 | . 2 ⊢ ((𝑅 ∩ ( I ↾ 𝐴)) Part 𝐴 ↔ ( Disj (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom (𝑅 ∩ ( I ↾ 𝐴)) / (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴)) | |
3 | dferALTV2 36888 | . 2 ⊢ ( ≀ (𝑅 ∩ ( I ↾ 𝐴)) ErALTV 𝐴 ↔ ( EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ ( I ↾ 𝐴)) / ≀ (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴)) | |
4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ((𝑅 ∩ ( I ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ ( I ↾ 𝐴)) ErALTV 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 ∩ cin 3891 I cid 5499 dom cdm 5600 ↾ cres 5602 / cqs 8528 ≀ ccoss 36387 EqvRel weqvrel 36404 ErALTV werALTV 36413 Disj wdisjALTV 36421 Part wpart 36426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rmo 3339 df-rab 3341 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ec 8531 df-qs 8535 df-coss 36631 df-refrel 36732 df-cnvrefrel 36747 df-symrel 36764 df-trrel 36794 df-eqvrel 36805 df-dmqs 36859 df-erALTV 36884 df-funALTV 36902 df-disjALTV 36925 df-part 36986 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |