| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > petinidres | Structured version Visualization version GIF version | ||
| Description: A class is a partition by an intersection with the identity class restricted to it if and only if the cosets by the intersection are in equivalence relation on it. Cf. br1cossinidres 38485, disjALTVinidres 38794 and eqvrel1cossinidres 38828. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| Ref | Expression |
|---|---|
| petinidres | ⊢ ((𝑅 ∩ ( I ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ ( I ↾ 𝐴)) ErALTV 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | petinidres2 38857 | . 2 ⊢ (( Disj (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom (𝑅 ∩ ( I ↾ 𝐴)) / (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ ( I ↾ 𝐴)) / ≀ (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴)) | |
| 2 | dfpart2 38806 | . 2 ⊢ ((𝑅 ∩ ( I ↾ 𝐴)) Part 𝐴 ↔ ( Disj (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom (𝑅 ∩ ( I ↾ 𝐴)) / (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴)) | |
| 3 | dferALTV2 38705 | . 2 ⊢ ( ≀ (𝑅 ∩ ( I ↾ 𝐴)) ErALTV 𝐴 ↔ ( EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ ( I ↾ 𝐴)) / ≀ (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ((𝑅 ∩ ( I ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ ( I ↾ 𝐴)) ErALTV 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∩ cin 3901 I cid 5510 dom cdm 5616 ↾ cres 5618 / cqs 8621 ≀ ccoss 38214 EqvRel weqvrel 38231 ErALTV werALTV 38240 Disj wdisjALTV 38248 Part wpart 38253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ec 8624 df-qs 8628 df-coss 38447 df-refrel 38548 df-cnvrefrel 38563 df-symrel 38580 df-trrel 38610 df-eqvrel 38621 df-dmqs 38675 df-erALTV 38701 df-funALTV 38719 df-disjALTV 38742 df-part 38803 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |