Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  petxrnidres Structured version   Visualization version   GIF version

Theorem petxrnidres 38765
Description: A class is a partition by a range Cartesian product with the identity class restricted to it if and only if the cosets by the range Cartesian product are in equivalence relation on it. Cf. br1cossxrnidres 38393, disjALTVxrnidres 38700 and eqvrel1cossxrnidres 38734. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
petxrnidres ((𝑅 ⋉ ( I ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( I ↾ 𝐴)) ErALTV 𝐴)

Proof of Theorem petxrnidres
StepHypRef Expression
1 petxrnidres2 38764 . 2 (( Disj (𝑅 ⋉ ( I ↾ 𝐴)) ∧ (dom (𝑅 ⋉ ( I ↾ 𝐴)) / (𝑅 ⋉ ( I ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ ( I ↾ 𝐴)) / ≀ (𝑅 ⋉ ( I ↾ 𝐴))) = 𝐴))
2 dfpart2 38711 . 2 ((𝑅 ⋉ ( I ↾ 𝐴)) Part 𝐴 ↔ ( Disj (𝑅 ⋉ ( I ↾ 𝐴)) ∧ (dom (𝑅 ⋉ ( I ↾ 𝐴)) / (𝑅 ⋉ ( I ↾ 𝐴))) = 𝐴))
3 dferALTV2 38610 . 2 ( ≀ (𝑅 ⋉ ( I ↾ 𝐴)) ErALTV 𝐴 ↔ ( EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ ( I ↾ 𝐴)) / ≀ (𝑅 ⋉ ( I ↾ 𝐴))) = 𝐴))
41, 2, 33bitr4i 303 1 ((𝑅 ⋉ ( I ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( I ↾ 𝐴)) ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539   I cid 5559  dom cdm 5667  cres 5669   / cqs 8727  cxrn 38122  ccoss 38123   EqvRel weqvrel 38140   ErALTV werALTV 38149   Disj wdisjALTV 38157   Part wpart 38162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550  df-1st 7997  df-2nd 7998  df-ec 8730  df-qs 8734  df-xrn 38313  df-coss 38353  df-refrel 38454  df-cnvrefrel 38469  df-symrel 38486  df-trrel 38516  df-eqvrel 38527  df-dmqs 38581  df-erALTV 38606  df-funALTV 38624  df-disjALTV 38647  df-part 38708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator