| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pet | Structured version Visualization version GIF version | ||
| Description: Partition-Equivalence
Theorem with general 𝑅 while preserving the
restricted converse epsilon relation of mpet2 38825 (as opposed to
petincnvepres 38834). A class is a partition by a range
Cartesian product
with general 𝑅 and the restricted converse element
class if and only
if the cosets by the range Cartesian product are in an equivalence
relation on it. Cf. br1cossxrncnvepres 38436.
This theorem (together with pets 38837 and pet2 38835) is the main result of my investigation into set theory. It is no more general than the conventional Member Partition-Equivalence Theorem mpet 38824, mpet2 38825 and mpet3 38821 (because you cannot set 𝑅 in this theorem in such a way that you get mpet2 38825), i.e., it is not the hypothetical General Partition-Equivalence Theorem gpet ⊢ (𝑅 Part 𝐴 ↔ ≀ 𝑅 ErALTV 𝐴), but this one has a general part that mpet2 38825 lacks: 𝑅, which is sufficient for my future application of set theory, for my purpose outside of set theory. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| pet | ⊢ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pet2 38835 | . 2 ⊢ (( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) / ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴)) | |
| 2 | dfpart2 38754 | . 2 ⊢ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴)) | |
| 3 | dferALTV2 38653 | . 2 ⊢ ( ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴 ↔ ( EqvRel ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) / ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 E cep 5530 ◡ccnv 5630 dom cdm 5631 ↾ cres 5633 / cqs 8647 ⋉ cxrn 38161 ≀ ccoss 38162 EqvRel weqvrel 38179 ErALTV werALTV 38188 Disj wdisjALTV 38196 Part wpart 38201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-eprel 5531 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-1st 7947 df-2nd 7948 df-ec 8650 df-qs 8654 df-xrn 38346 df-coss 38395 df-refrel 38496 df-cnvrefrel 38511 df-symrel 38528 df-trrel 38558 df-eqvrel 38569 df-dmqs 38623 df-erALTV 38649 df-funALTV 38667 df-disjALTV 38690 df-eldisj 38692 df-part 38751 |
| This theorem is referenced by: pets 38837 |
| Copyright terms: Public domain | W3C validator |