Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pet Structured version   Visualization version   GIF version

Theorem pet 37069
Description: Partition-Equivalence Theorem with general 𝑅 while preserving the restricted converse epsilon relation of mpet2 37058 (as opposed to petincnvepres 37067). A class is a partition by a range Cartesian product with general 𝑅 and the restricted converse element class if and only if the cosets by the range Cartesian product are in an equivalence relation on it. Cf. br1cossxrncnvepres 36670.

This theorem (together with pets 37070 and pet2 37068) is the main result of my investigation into set theory. It is no more general than the conventional Member Partition-Equivalence Theorem mpet 37057, mpet2 37058 and mpet3 37054 (because you cannot set 𝑅 in this theorem in such a way that you get mpet2 37058), i.e., it is not the hypothetical General Partition-Equivalence Theorem gpet (𝑅 Part 𝐴 ↔ ≀ 𝑅 ErALTV 𝐴), but this one has a general part that mpet2 37058 lacks: 𝑅, which is sufficient for my future application of set theory, for my purpose outside of set theory. (Contributed by Peter Mazsa, 23-Sep-2021.)

Assertion
Ref Expression
pet ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴)

Proof of Theorem pet
StepHypRef Expression
1 pet2 37068 . 2 (( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ ( E ↾ 𝐴)) / ≀ (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴))
2 dfpart2 36987 . 2 ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴))
3 dferALTV2 36886 . 2 ( ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴 ↔ ( EqvRel ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ ( E ↾ 𝐴)) / ≀ (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴))
41, 2, 33bitr4i 302 1 ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540   E cep 5512  ccnv 5606  dom cdm 5607  cres 5609   / cqs 8545  cxrn 36388  ccoss 36389   EqvRel weqvrel 36406   ErALTV werALTV 36415   Disj wdisjALTV 36423   Part wpart 36428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-eprel 5513  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-fo 6471  df-fv 6473  df-1st 7876  df-2nd 7877  df-ec 8548  df-qs 8552  df-xrn 36589  df-coss 36629  df-refrel 36730  df-cnvrefrel 36745  df-symrel 36762  df-trrel 36792  df-eqvrel 36803  df-dmqs 36857  df-erALTV 36882  df-funALTV 36900  df-disjALTV 36923  df-eldisj 36925  df-part 36984
This theorem is referenced by:  pets  37070
  Copyright terms: Public domain W3C validator