Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pet Structured version   Visualization version   GIF version

Theorem pet 38852
Description: Partition-Equivalence Theorem with general 𝑅 while preserving the restricted converse epsilon relation of mpet2 38841 (as opposed to petincnvepres 38850). A class is a partition by a range Cartesian product with general 𝑅 and the restricted converse element class if and only if the cosets by the range Cartesian product are in an equivalence relation on it. Cf. br1cossxrncnvepres 38453.

This theorem (together with pets 38853 and pet2 38851) is the main result of my investigation into set theory. It is no more general than the conventional Member Partition-Equivalence Theorem mpet 38840, mpet2 38841 and mpet3 38837 (because you cannot set 𝑅 in this theorem in such a way that you get mpet2 38841), i.e., it is not the hypothetical General Partition-Equivalence Theorem gpet (𝑅 Part 𝐴 ↔ ≀ 𝑅 ErALTV 𝐴), but this one has a general part that mpet2 38841 lacks: 𝑅, which is sufficient for my future application of set theory, for my purpose outside of set theory. (Contributed by Peter Mazsa, 23-Sep-2021.)

Assertion
Ref Expression
pet ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴)

Proof of Theorem pet
StepHypRef Expression
1 pet2 38851 . 2 (( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ ( E ↾ 𝐴)) / ≀ (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴))
2 dfpart2 38770 . 2 ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴))
3 dferALTV2 38669 . 2 ( ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴 ↔ ( EqvRel ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ ( E ↾ 𝐴)) / ≀ (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴))
41, 2, 33bitr4i 303 1 ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540   E cep 5583  ccnv 5684  dom cdm 5685  cres 5687   / cqs 8744  cxrn 38181  ccoss 38182   EqvRel weqvrel 38199   ErALTV werALTV 38208   Disj wdisjALTV 38216   Part wpart 38221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-eprel 5584  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fo 6567  df-fv 6569  df-1st 8014  df-2nd 8015  df-ec 8747  df-qs 8751  df-xrn 38372  df-coss 38412  df-refrel 38513  df-cnvrefrel 38528  df-symrel 38545  df-trrel 38575  df-eqvrel 38586  df-dmqs 38640  df-erALTV 38665  df-funALTV 38683  df-disjALTV 38706  df-eldisj 38708  df-part 38767
This theorem is referenced by:  pets  38853
  Copyright terms: Public domain W3C validator