Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pet Structured version   Visualization version   GIF version

Theorem pet 38869
Description: Partition-Equivalence Theorem with general 𝑅 while preserving the restricted converse epsilon relation of mpet2 38858 (as opposed to petincnvepres 38867). A class is a partition by a range Cartesian product with general 𝑅 and the restricted converse element class if and only if the cosets by the range Cartesian product are in an equivalence relation on it. Cf. br1cossxrncnvepres 38470.

This theorem (together with pets 38870 and pet2 38868) is the main result of my investigation into set theory. It is no more general than the conventional Member Partition-Equivalence Theorem mpet 38857, mpet2 38858 and mpet3 38854 (because you cannot set 𝑅 in this theorem in such a way that you get mpet2 38858), i.e., it is not the hypothetical General Partition-Equivalence Theorem gpet (𝑅 Part 𝐴 ↔ ≀ 𝑅 ErALTV 𝐴), but this one has a general part that mpet2 38858 lacks: 𝑅, which is sufficient for my future application of set theory, for my purpose outside of set theory. (Contributed by Peter Mazsa, 23-Sep-2021.)

Assertion
Ref Expression
pet ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴)

Proof of Theorem pet
StepHypRef Expression
1 pet2 38868 . 2 (( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ ( E ↾ 𝐴)) / ≀ (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴))
2 dfpart2 38787 . 2 ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴))
3 dferALTV2 38686 . 2 ( ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴 ↔ ( EqvRel ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ ( E ↾ 𝐴)) / ≀ (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴))
41, 2, 33bitr4i 303 1 ((𝑅 ⋉ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540   E cep 5552  ccnv 5653  dom cdm 5654  cres 5656   / cqs 8718  cxrn 38198  ccoss 38199   EqvRel weqvrel 38216   ErALTV werALTV 38225   Disj wdisjALTV 38233   Part wpart 38238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-eprel 5553  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fo 6537  df-fv 6539  df-1st 7988  df-2nd 7989  df-ec 8721  df-qs 8725  df-xrn 38389  df-coss 38429  df-refrel 38530  df-cnvrefrel 38545  df-symrel 38562  df-trrel 38592  df-eqvrel 38603  df-dmqs 38657  df-erALTV 38682  df-funALTV 38700  df-disjALTV 38723  df-eldisj 38725  df-part 38784
This theorem is referenced by:  pets  38870
  Copyright terms: Public domain W3C validator