| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pet | Structured version Visualization version GIF version | ||
| Description: Partition-Equivalence
Theorem with general 𝑅 while preserving the
restricted converse epsilon relation of mpet2 38858 (as opposed to
petincnvepres 38867). A class is a partition by a range
Cartesian product
with general 𝑅 and the restricted converse element
class if and only
if the cosets by the range Cartesian product are in an equivalence
relation on it. Cf. br1cossxrncnvepres 38470.
This theorem (together with pets 38870 and pet2 38868) is the main result of my investigation into set theory. It is no more general than the conventional Member Partition-Equivalence Theorem mpet 38857, mpet2 38858 and mpet3 38854 (because you cannot set 𝑅 in this theorem in such a way that you get mpet2 38858), i.e., it is not the hypothetical General Partition-Equivalence Theorem gpet ⊢ (𝑅 Part 𝐴 ↔ ≀ 𝑅 ErALTV 𝐴), but this one has a general part that mpet2 38858 lacks: 𝑅, which is sufficient for my future application of set theory, for my purpose outside of set theory. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| pet | ⊢ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pet2 38868 | . 2 ⊢ (( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) / ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴)) | |
| 2 | dfpart2 38787 | . 2 ⊢ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴)) | |
| 3 | dferALTV2 38686 | . 2 ⊢ ( ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴 ↔ ( EqvRel ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) / ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 E cep 5552 ◡ccnv 5653 dom cdm 5654 ↾ cres 5656 / cqs 8718 ⋉ cxrn 38198 ≀ ccoss 38199 EqvRel weqvrel 38216 ErALTV werALTV 38225 Disj wdisjALTV 38233 Part wpart 38238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-fv 6539 df-1st 7988 df-2nd 7989 df-ec 8721 df-qs 8725 df-xrn 38389 df-coss 38429 df-refrel 38530 df-cnvrefrel 38545 df-symrel 38562 df-trrel 38592 df-eqvrel 38603 df-dmqs 38657 df-erALTV 38682 df-funALTV 38700 df-disjALTV 38723 df-eldisj 38725 df-part 38784 |
| This theorem is referenced by: pets 38870 |
| Copyright terms: Public domain | W3C validator |