![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pet | Structured version Visualization version GIF version |
Description: Partition-Equivalence
Theorem with general 𝑅 while preserving the
restricted converse epsilon relation of mpet2 38822 (as opposed to
petincnvepres 38831). A class is a partition by a range
Cartesian product
with general 𝑅 and the restricted converse element
class if and only
if the cosets by the range Cartesian product are in an equivalence
relation on it. Cf. br1cossxrncnvepres 38434.
This theorem (together with pets 38834 and pet2 38832) is the main result of my investigation into set theory. It is no more general than the conventional Member Partition-Equivalence Theorem mpet 38821, mpet2 38822 and mpet3 38818 (because you cannot set 𝑅 in this theorem in such a way that you get mpet2 38822), i.e., it is not the hypothetical General Partition-Equivalence Theorem gpet ⊢ (𝑅 Part 𝐴 ↔ ≀ 𝑅 ErALTV 𝐴), but this one has a general part that mpet2 38822 lacks: 𝑅, which is sufficient for my future application of set theory, for my purpose outside of set theory. (Contributed by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
pet | ⊢ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pet2 38832 | . 2 ⊢ (( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) / ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴)) | |
2 | dfpart2 38751 | . 2 ⊢ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴)) | |
3 | dferALTV2 38650 | . 2 ⊢ ( ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴 ↔ ( EqvRel ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) / ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴)) | |
4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ((𝑅 ⋉ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ErALTV 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 E cep 5588 ◡ccnv 5688 dom cdm 5689 ↾ cres 5691 / cqs 8743 ⋉ cxrn 38161 ≀ ccoss 38162 EqvRel weqvrel 38179 ErALTV werALTV 38188 Disj wdisjALTV 38196 Part wpart 38201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-eprel 5589 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-1st 8013 df-2nd 8014 df-ec 8746 df-qs 8750 df-xrn 38353 df-coss 38393 df-refrel 38494 df-cnvrefrel 38509 df-symrel 38526 df-trrel 38556 df-eqvrel 38567 df-dmqs 38621 df-erALTV 38646 df-funALTV 38664 df-disjALTV 38687 df-eldisj 38689 df-part 38748 |
This theorem is referenced by: pets 38834 |
Copyright terms: Public domain | W3C validator |