Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  partim Structured version   Visualization version   GIF version

Theorem partim 38826
Description: Partition implies equivalence relation by the cosets of the relation on its natural domain, cf. partim2 38825. (Contributed by Peter Mazsa, 17-Sep-2021.)
Assertion
Ref Expression
partim (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴)

Proof of Theorem partim
StepHypRef Expression
1 partim2 38825 . 2 (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))
2 dfpart2 38787 . 2 (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
3 dferALTV2 38686 . 2 ( ≀ 𝑅 ErALTV 𝐴 ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 /𝑅) = 𝐴))
41, 2, 33imtr4i 292 1 (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  dom cdm 5654   / cqs 8718  ccoss 38199   EqvRel weqvrel 38216   ErALTV werALTV 38225   Disj wdisjALTV 38233   Part wpart 38238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rmo 3359  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ec 8721  df-qs 8725  df-coss 38429  df-refrel 38530  df-cnvrefrel 38545  df-symrel 38562  df-trrel 38592  df-eqvrel 38603  df-dmqs 38657  df-erALTV 38682  df-disjALTV 38723  df-part 38784
This theorem is referenced by:  partimeq  38827  partimcomember  38853
  Copyright terms: Public domain W3C validator