![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > partim | Structured version Visualization version GIF version |
Description: Partition implies equivalence relation by the cosets of the relation on its natural domain, cf. partim2 37677. (Contributed by Peter Mazsa, 17-Sep-2021.) |
Ref | Expression |
---|---|
partim | ⊢ (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | partim2 37677 | . 2 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | |
2 | dfpart2 37639 | . 2 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | |
3 | dferALTV2 37538 | . 2 ⊢ ( ≀ 𝑅 ErALTV 𝐴 ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | |
4 | 1, 2, 3 | 3imtr4i 292 | 1 ⊢ (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 dom cdm 5677 / cqs 8702 ≀ ccoss 37043 EqvRel weqvrel 37060 ErALTV werALTV 37069 Disj wdisjALTV 37077 Part wpart 37082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rmo 3377 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ec 8705 df-qs 8709 df-coss 37281 df-refrel 37382 df-cnvrefrel 37397 df-symrel 37414 df-trrel 37444 df-eqvrel 37455 df-dmqs 37509 df-erALTV 37534 df-disjALTV 37575 df-part 37636 |
This theorem is referenced by: partimeq 37679 partimcomember 37705 |
Copyright terms: Public domain | W3C validator |