![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > partim | Structured version Visualization version GIF version |
Description: Partition implies equivalence relation by the cosets of the relation on its natural domain, cf. partim2 38763. (Contributed by Peter Mazsa, 17-Sep-2021.) |
Ref | Expression |
---|---|
partim | ⊢ (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | partim2 38763 | . 2 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | |
2 | dfpart2 38725 | . 2 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | |
3 | dferALTV2 38624 | . 2 ⊢ ( ≀ 𝑅 ErALTV 𝐴 ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | |
4 | 1, 2, 3 | 3imtr4i 292 | 1 ⊢ (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 dom cdm 5700 / cqs 8762 ≀ ccoss 38135 EqvRel weqvrel 38152 ErALTV werALTV 38161 Disj wdisjALTV 38169 Part wpart 38174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 df-qs 8769 df-coss 38367 df-refrel 38468 df-cnvrefrel 38483 df-symrel 38500 df-trrel 38530 df-eqvrel 38541 df-dmqs 38595 df-erALTV 38620 df-disjALTV 38661 df-part 38722 |
This theorem is referenced by: partimeq 38765 partimcomember 38791 |
Copyright terms: Public domain | W3C validator |