| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > partim | Structured version Visualization version GIF version | ||
| Description: Partition implies equivalence relation by the cosets of the relation on its natural domain, cf. partim2 38804. (Contributed by Peter Mazsa, 17-Sep-2021.) |
| Ref | Expression |
|---|---|
| partim | ⊢ (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | partim2 38804 | . 2 ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | |
| 2 | dfpart2 38766 | . 2 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | |
| 3 | dferALTV2 38665 | . 2 ⊢ ( ≀ 𝑅 ErALTV 𝐴 ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | |
| 4 | 1, 2, 3 | 3imtr4i 292 | 1 ⊢ (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 dom cdm 5623 / cqs 8631 ≀ ccoss 38174 EqvRel weqvrel 38191 ErALTV werALTV 38200 Disj wdisjALTV 38208 Part wpart 38213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rmo 3345 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ec 8634 df-qs 8638 df-coss 38407 df-refrel 38508 df-cnvrefrel 38523 df-symrel 38540 df-trrel 38570 df-eqvrel 38581 df-dmqs 38635 df-erALTV 38661 df-disjALTV 38702 df-part 38763 |
| This theorem is referenced by: partimeq 38806 partimcomember 38832 |
| Copyright terms: Public domain | W3C validator |