![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > petincnvepres | Structured version Visualization version GIF version |
Description: The shortest form of a partition-equivalence theorem with intersection and general 𝑅. Cf. br1cossincnvepres 37974. Cf. pet 38375. (Contributed by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
petincnvepres | ⊢ ((𝑅 ∩ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ErALTV 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | petincnvepres2 38372 | . 2 ⊢ (( Disj (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom (𝑅 ∩ (◡ E ↾ 𝐴)) / (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) / ≀ (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴)) | |
2 | dfpart2 38293 | . 2 ⊢ ((𝑅 ∩ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ( Disj (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom (𝑅 ∩ (◡ E ↾ 𝐴)) / (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴)) | |
3 | dferALTV2 38192 | . 2 ⊢ ( ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ErALTV 𝐴 ↔ ( EqvRel ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) / ≀ (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴)) | |
4 | 1, 2, 3 | 3bitr4i 302 | 1 ⊢ ((𝑅 ∩ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ErALTV 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ∩ cin 3940 E cep 5576 ◡ccnv 5672 dom cdm 5673 ↾ cres 5675 / cqs 8717 ≀ ccoss 37701 EqvRel weqvrel 37718 ErALTV werALTV 37727 Disj wdisjALTV 37735 Part wpart 37740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-rab 3420 df-v 3465 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5145 df-opab 5207 df-id 5571 df-eprel 5577 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-ec 8720 df-qs 8724 df-coss 37935 df-refrel 38036 df-cnvrefrel 38051 df-symrel 38068 df-trrel 38098 df-eqvrel 38109 df-dmqs 38163 df-erALTV 38188 df-funALTV 38206 df-disjALTV 38229 df-eldisj 38231 df-part 38290 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |