![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > petincnvepres | Structured version Visualization version GIF version |
Description: The shortest form of a partition-equivalence theorem with intersection and general 𝑅. Cf. br1cossincnvepres 38406. Cf. pet 38807. (Contributed by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
petincnvepres | ⊢ ((𝑅 ∩ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ErALTV 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | petincnvepres2 38804 | . 2 ⊢ (( Disj (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom (𝑅 ∩ (◡ E ↾ 𝐴)) / (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) / ≀ (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴)) | |
2 | dfpart2 38725 | . 2 ⊢ ((𝑅 ∩ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ( Disj (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom (𝑅 ∩ (◡ E ↾ 𝐴)) / (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴)) | |
3 | dferALTV2 38624 | . 2 ⊢ ( ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ErALTV 𝐴 ↔ ( EqvRel ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) / ≀ (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴)) | |
4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ((𝑅 ∩ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ErALTV 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∩ cin 3975 E cep 5598 ◡ccnv 5699 dom cdm 5700 ↾ cres 5702 / cqs 8762 ≀ ccoss 38135 EqvRel weqvrel 38152 ErALTV werALTV 38161 Disj wdisjALTV 38169 Part wpart 38174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 df-qs 8769 df-coss 38367 df-refrel 38468 df-cnvrefrel 38483 df-symrel 38500 df-trrel 38530 df-eqvrel 38541 df-dmqs 38595 df-erALTV 38620 df-funALTV 38638 df-disjALTV 38661 df-eldisj 38663 df-part 38722 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |