Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  petincnvepres Structured version   Visualization version   GIF version

Theorem petincnvepres 38841
Description: The shortest form of a partition-equivalence theorem with intersection and general 𝑅. Cf. br1cossincnvepres 38441. Cf. pet 38843. (Contributed by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
petincnvepres ((𝑅 ∩ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ ( E ↾ 𝐴)) ErALTV 𝐴)

Proof of Theorem petincnvepres
StepHypRef Expression
1 petincnvepres2 38840 . 2 (( Disj (𝑅 ∩ ( E ↾ 𝐴)) ∧ (dom (𝑅 ∩ ( E ↾ 𝐴)) / (𝑅 ∩ ( E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ∩ ( E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ ( E ↾ 𝐴)) / ≀ (𝑅 ∩ ( E ↾ 𝐴))) = 𝐴))
2 dfpart2 38761 . 2 ((𝑅 ∩ ( E ↾ 𝐴)) Part 𝐴 ↔ ( Disj (𝑅 ∩ ( E ↾ 𝐴)) ∧ (dom (𝑅 ∩ ( E ↾ 𝐴)) / (𝑅 ∩ ( E ↾ 𝐴))) = 𝐴))
3 dferALTV2 38660 . 2 ( ≀ (𝑅 ∩ ( E ↾ 𝐴)) ErALTV 𝐴 ↔ ( EqvRel ≀ (𝑅 ∩ ( E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ ( E ↾ 𝐴)) / ≀ (𝑅 ∩ ( E ↾ 𝐴))) = 𝐴))
41, 2, 33bitr4i 303 1 ((𝑅 ∩ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ ( E ↾ 𝐴)) ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  cin 3913   E cep 5537  ccnv 5637  dom cdm 5638  cres 5640   / cqs 8670  ccoss 38169   EqvRel weqvrel 38186   ErALTV werALTV 38195   Disj wdisjALTV 38203   Part wpart 38208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-eprel 5538  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673  df-qs 8677  df-coss 38402  df-refrel 38503  df-cnvrefrel 38518  df-symrel 38535  df-trrel 38565  df-eqvrel 38576  df-dmqs 38630  df-erALTV 38656  df-funALTV 38674  df-disjALTV 38697  df-eldisj 38699  df-part 38758
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator