Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  petincnvepres Structured version   Visualization version   GIF version

Theorem petincnvepres 38847
Description: The shortest form of a partition-equivalence theorem with intersection and general 𝑅. Cf. br1cossincnvepres 38447. Cf. pet 38849. (Contributed by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
petincnvepres ((𝑅 ∩ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ ( E ↾ 𝐴)) ErALTV 𝐴)

Proof of Theorem petincnvepres
StepHypRef Expression
1 petincnvepres2 38846 . 2 (( Disj (𝑅 ∩ ( E ↾ 𝐴)) ∧ (dom (𝑅 ∩ ( E ↾ 𝐴)) / (𝑅 ∩ ( E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ∩ ( E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ ( E ↾ 𝐴)) / ≀ (𝑅 ∩ ( E ↾ 𝐴))) = 𝐴))
2 dfpart2 38767 . 2 ((𝑅 ∩ ( E ↾ 𝐴)) Part 𝐴 ↔ ( Disj (𝑅 ∩ ( E ↾ 𝐴)) ∧ (dom (𝑅 ∩ ( E ↾ 𝐴)) / (𝑅 ∩ ( E ↾ 𝐴))) = 𝐴))
3 dferALTV2 38666 . 2 ( ≀ (𝑅 ∩ ( E ↾ 𝐴)) ErALTV 𝐴 ↔ ( EqvRel ≀ (𝑅 ∩ ( E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ ( E ↾ 𝐴)) / ≀ (𝑅 ∩ ( E ↾ 𝐴))) = 𝐴))
41, 2, 33bitr4i 303 1 ((𝑅 ∩ ( E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ ( E ↾ 𝐴)) ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  cin 3902   E cep 5518  ccnv 5618  dom cdm 5619  cres 5621   / cqs 8624  ccoss 38175   EqvRel weqvrel 38192   ErALTV werALTV 38201   Disj wdisjALTV 38209   Part wpart 38214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8627  df-qs 8631  df-coss 38408  df-refrel 38509  df-cnvrefrel 38524  df-symrel 38541  df-trrel 38571  df-eqvrel 38582  df-dmqs 38636  df-erALTV 38662  df-funALTV 38680  df-disjALTV 38703  df-eldisj 38705  df-part 38764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator