| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > petincnvepres | Structured version Visualization version GIF version | ||
| Description: The shortest form of a partition-equivalence theorem with intersection and general 𝑅. Cf. br1cossincnvepres 38441. Cf. pet 38843. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| petincnvepres | ⊢ ((𝑅 ∩ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ErALTV 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | petincnvepres2 38840 | . 2 ⊢ (( Disj (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom (𝑅 ∩ (◡ E ↾ 𝐴)) / (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) / ≀ (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴)) | |
| 2 | dfpart2 38761 | . 2 ⊢ ((𝑅 ∩ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ( Disj (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom (𝑅 ∩ (◡ E ↾ 𝐴)) / (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴)) | |
| 3 | dferALTV2 38660 | . 2 ⊢ ( ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ErALTV 𝐴 ↔ ( EqvRel ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) / ≀ (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ((𝑅 ∩ (◡ E ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ErALTV 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∩ cin 3913 E cep 5537 ◡ccnv 5637 dom cdm 5638 ↾ cres 5640 / cqs 8670 ≀ ccoss 38169 EqvRel weqvrel 38186 ErALTV werALTV 38195 Disj wdisjALTV 38203 Part wpart 38208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-eprel 5538 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 df-qs 8677 df-coss 38402 df-refrel 38503 df-cnvrefrel 38518 df-symrel 38535 df-trrel 38565 df-eqvrel 38576 df-dmqs 38630 df-erALTV 38656 df-funALTV 38674 df-disjALTV 38697 df-eldisj 38699 df-part 38758 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |