Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > petid | Structured version Visualization version GIF version |
Description: A class is a partition by the identity class if and only if the cosets by the identity class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
Ref | Expression |
---|---|
petid | ⊢ ( I Part 𝐴 ↔ ≀ I ErALTV 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | petid2 37030 | . 2 ⊢ (( Disj I ∧ (dom I / I ) = 𝐴) ↔ ( EqvRel ≀ I ∧ (dom ≀ I / ≀ I ) = 𝐴)) | |
2 | dfpart2 36983 | . 2 ⊢ ( I Part 𝐴 ↔ ( Disj I ∧ (dom I / I ) = 𝐴)) | |
3 | dferALTV2 36882 | . 2 ⊢ ( ≀ I ErALTV 𝐴 ↔ ( EqvRel ≀ I ∧ (dom ≀ I / ≀ I ) = 𝐴)) | |
4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ ( I Part 𝐴 ↔ ≀ I ErALTV 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 I cid 5499 dom cdm 5600 / cqs 8528 ≀ ccoss 36381 EqvRel weqvrel 36398 ErALTV werALTV 36407 Disj wdisjALTV 36415 Part wpart 36420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rmo 3331 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ec 8531 df-qs 8535 df-coss 36625 df-refrel 36726 df-cnvrefrel 36741 df-symrel 36758 df-trrel 36788 df-eqvrel 36799 df-dmqs 36853 df-erALTV 36878 df-disjALTV 36919 df-part 36980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |