Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  petid Structured version   Visualization version   GIF version

Theorem petid 38797
Description: A class is a partition by the identity class if and only if the cosets by the identity class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
petid ( I Part 𝐴 ↔ ≀ I ErALTV 𝐴)

Proof of Theorem petid
StepHypRef Expression
1 petid2 38796 . 2 (( Disj I ∧ (dom I / I ) = 𝐴) ↔ ( EqvRel ≀ I ∧ (dom ≀ I / ≀ I ) = 𝐴))
2 dfpart2 38749 . 2 ( I Part 𝐴 ↔ ( Disj I ∧ (dom I / I ) = 𝐴))
3 dferALTV2 38648 . 2 ( ≀ I ErALTV 𝐴 ↔ ( EqvRel ≀ I ∧ (dom ≀ I / ≀ I ) = 𝐴))
41, 2, 33bitr4i 303 1 ( I Part 𝐴 ↔ ≀ I ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540   I cid 5517  dom cdm 5623   / cqs 8631  ccoss 38157   EqvRel weqvrel 38174   ErALTV werALTV 38183   Disj wdisjALTV 38191   Part wpart 38196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rmo 3345  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ec 8634  df-qs 8638  df-coss 38390  df-refrel 38491  df-cnvrefrel 38506  df-symrel 38523  df-trrel 38553  df-eqvrel 38564  df-dmqs 38618  df-erALTV 38644  df-disjALTV 38685  df-part 38746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator