Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  petid Structured version   Visualization version   GIF version

Theorem petid 38759
Description: A class is a partition by the identity class if and only if the cosets by the identity class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
petid ( I Part 𝐴 ↔ ≀ I ErALTV 𝐴)

Proof of Theorem petid
StepHypRef Expression
1 petid2 38758 . 2 (( Disj I ∧ (dom I / I ) = 𝐴) ↔ ( EqvRel ≀ I ∧ (dom ≀ I / ≀ I ) = 𝐴))
2 dfpart2 38711 . 2 ( I Part 𝐴 ↔ ( Disj I ∧ (dom I / I ) = 𝐴))
3 dferALTV2 38610 . 2 ( ≀ I ErALTV 𝐴 ↔ ( EqvRel ≀ I ∧ (dom ≀ I / ≀ I ) = 𝐴))
41, 2, 33bitr4i 303 1 ( I Part 𝐴 ↔ ≀ I ErALTV 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539   I cid 5559  dom cdm 5667   / cqs 8727  ccoss 38123   EqvRel weqvrel 38140   ErALTV werALTV 38149   Disj wdisjALTV 38157   Part wpart 38162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rmo 3364  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ec 8730  df-qs 8734  df-coss 38353  df-refrel 38454  df-cnvrefrel 38469  df-symrel 38486  df-trrel 38516  df-eqvrel 38527  df-dmqs 38581  df-erALTV 38606  df-disjALTV 38647  df-part 38708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator