![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfss6 | Structured version Visualization version GIF version |
Description: Alternate definition of subclass relationship. (Contributed by RP, 16-Apr-2020.) |
Ref | Expression |
---|---|
dfss6 | ⊢ (𝐴 ⊆ 𝐵 ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3961 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | notnotb 314 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | bitri 274 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ¬ ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
4 | exanali 1854 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
5 | 3, 4 | xchbinxr 334 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 ∃wex 1773 ∈ wcel 2098 ⊆ wss 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-ss 3961 |
This theorem is referenced by: dfssr2 38121 |
Copyright terms: Public domain | W3C validator |