Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss6 Structured version   Visualization version   GIF version

Theorem dfss6 3904
 Description: Alternate definition of subclass relationship. (Contributed by RP, 16-Apr-2020.)
Assertion
Ref Expression
dfss6 (𝐴𝐵 ↔ ¬ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfss6
StepHypRef Expression
1 dfss2 3901 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2 notnotb 318 . . 3 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ ¬ ¬ ∀𝑥(𝑥𝐴𝑥𝐵))
31, 2bitri 278 . 2 (𝐴𝐵 ↔ ¬ ¬ ∀𝑥(𝑥𝐴𝑥𝐵))
4 exanali 1860 . 2 (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ ¬ ∀𝑥(𝑥𝐴𝑥𝐵))
53, 4xchbinxr 338 1 (𝐴𝐵 ↔ ¬ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536  ∃wex 1781   ∈ wcel 2111   ⊆ wss 3881 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-v 3443  df-in 3888  df-ss 3898 This theorem is referenced by:  dfssr2  35915
 Copyright terms: Public domain W3C validator