| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfss6 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of subclass relationship. (Contributed by RP, 16-Apr-2020.) |
| Ref | Expression |
|---|---|
| dfss6 | ⊢ (𝐴 ⊆ 𝐵 ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3967 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | notnotb 315 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ¬ ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 4 | exanali 1858 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 5 | 3, 4 | xchbinxr 335 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∃wex 1778 ∈ wcel 2107 ⊆ wss 3950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-ss 3967 |
| This theorem is referenced by: dfssr2 38501 |
| Copyright terms: Public domain | W3C validator |