![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfssr2 | Structured version Visualization version GIF version |
Description: Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021.) |
Ref | Expression |
---|---|
dfssr2 | ⊢ S = ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epel 5602 | . . . . . . 7 ⊢ (𝑧 E 𝑥 ↔ 𝑧 ∈ 𝑥) | |
2 | brvdif 38217 | . . . . . . . 8 ⊢ (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧 E 𝑦) | |
3 | epel 5602 | . . . . . . . 8 ⊢ (𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦) | |
4 | 2, 3 | xchbinx 334 | . . . . . . 7 ⊢ (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧 ∈ 𝑦) |
5 | 1, 4 | anbi12i 627 | . . . . . 6 ⊢ ((𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) |
6 | 5 | exbii 1846 | . . . . 5 ⊢ (∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) |
7 | 6 | notbii 320 | . . . 4 ⊢ (¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ ¬ ∃𝑧(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) |
8 | dfss6 3998 | . . . 4 ⊢ (𝑥 ⊆ 𝑦 ↔ ¬ ∃𝑧(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) | |
9 | 7, 8 | bitr4i 278 | . . 3 ⊢ (¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ 𝑥 ⊆ 𝑦) |
10 | 9 | opabbii 5233 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} |
11 | rnxrn 38354 | . . . 4 ⊢ ran ( E ⋉ (V ∖ E )) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} | |
12 | 11 | difeq2i 4146 | . . 3 ⊢ ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = ((V × V) ∖ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)}) |
13 | vvdifopab 38216 | . . 3 ⊢ ((V × V) ∖ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)}) = {〈𝑥, 𝑦〉 ∣ ¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} | |
14 | 12, 13 | eqtri 2768 | . 2 ⊢ ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = {〈𝑥, 𝑦〉 ∣ ¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} |
15 | df-ssr 38454 | . 2 ⊢ S = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} | |
16 | 10, 14, 15 | 3eqtr4ri 2779 | 1 ⊢ S = ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 class class class wbr 5166 {copab 5228 E cep 5598 × cxp 5698 ran crn 5701 ⋉ cxrn 38134 S cssr 38138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-1st 8030 df-2nd 8031 df-ec 8765 df-xrn 38327 df-ssr 38454 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |