Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfssr2 Structured version   Visualization version   GIF version

Theorem dfssr2 38490
Description: Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021.)
Assertion
Ref Expression
dfssr2 S = ((V × V) ∖ ran ( E ⋉ (V ∖ E )))

Proof of Theorem dfssr2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 5541 . . . . . . 7 (𝑧 E 𝑥𝑧𝑥)
2 brvdif 38250 . . . . . . . 8 (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧 E 𝑦)
3 epel 5541 . . . . . . . 8 (𝑧 E 𝑦𝑧𝑦)
42, 3xchbinx 334 . . . . . . 7 (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧𝑦)
51, 4anbi12i 628 . . . . . 6 ((𝑧 E 𝑥𝑧(V ∖ E )𝑦) ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑦))
65exbii 1848 . . . . 5 (∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦) ↔ ∃𝑧(𝑧𝑥 ∧ ¬ 𝑧𝑦))
76notbii 320 . . . 4 (¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦) ↔ ¬ ∃𝑧(𝑧𝑥 ∧ ¬ 𝑧𝑦))
8 dfss6 3936 . . . 4 (𝑥𝑦 ↔ ¬ ∃𝑧(𝑧𝑥 ∧ ¬ 𝑧𝑦))
97, 8bitr4i 278 . . 3 (¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦) ↔ 𝑥𝑦)
109opabbii 5174 . 2 {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)} = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
11 rnxrn 38384 . . . 4 ran ( E ⋉ (V ∖ E )) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)}
1211difeq2i 4086 . . 3 ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)})
13 vvdifopab 38249 . . 3 ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)}
1412, 13eqtri 2752 . 2 ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)}
15 df-ssr 38489 . 2 S = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
1610, 14, 153eqtr4ri 2763 1 S = ((V × V) ∖ ran ( E ⋉ (V ∖ E )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  cdif 3911  wss 3914   class class class wbr 5107  {copab 5169   E cep 5537   × cxp 5636  ran crn 5639  cxrn 38168   S cssr 38172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-eprel 5538  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-1st 7968  df-2nd 7969  df-ec 8673  df-xrn 38353  df-ssr 38489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator