Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfssr2 | Structured version Visualization version GIF version |
Description: Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021.) |
Ref | Expression |
---|---|
dfssr2 | ⊢ S = ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epel 5497 | . . . . . . 7 ⊢ (𝑧 E 𝑥 ↔ 𝑧 ∈ 𝑥) | |
2 | brvdif 36379 | . . . . . . . 8 ⊢ (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧 E 𝑦) | |
3 | epel 5497 | . . . . . . . 8 ⊢ (𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦) | |
4 | 2, 3 | xchbinx 333 | . . . . . . 7 ⊢ (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧 ∈ 𝑦) |
5 | 1, 4 | anbi12i 626 | . . . . . 6 ⊢ ((𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) |
6 | 5 | exbii 1853 | . . . . 5 ⊢ (∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) |
7 | 6 | notbii 319 | . . . 4 ⊢ (¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ ¬ ∃𝑧(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) |
8 | dfss6 3914 | . . . 4 ⊢ (𝑥 ⊆ 𝑦 ↔ ¬ ∃𝑧(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) | |
9 | 7, 8 | bitr4i 277 | . . 3 ⊢ (¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ 𝑥 ⊆ 𝑦) |
10 | 9 | opabbii 5145 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} |
11 | rnxrn 36503 | . . . 4 ⊢ ran ( E ⋉ (V ∖ E )) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} | |
12 | 11 | difeq2i 4058 | . . 3 ⊢ ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = ((V × V) ∖ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)}) |
13 | vvdifopab 36378 | . . 3 ⊢ ((V × V) ∖ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)}) = {〈𝑥, 𝑦〉 ∣ ¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} | |
14 | 12, 13 | eqtri 2767 | . 2 ⊢ ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = {〈𝑥, 𝑦〉 ∣ ¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} |
15 | df-ssr 36595 | . 2 ⊢ S = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} | |
16 | 10, 14, 15 | 3eqtr4ri 2778 | 1 ⊢ S = ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∃wex 1785 ∈ wcel 2109 Vcvv 3430 ∖ cdif 3888 ⊆ wss 3891 class class class wbr 5078 {copab 5140 E cep 5493 × cxp 5586 ran crn 5589 ⋉ cxrn 36311 S cssr 36315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-eprel 5494 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fo 6436 df-fv 6438 df-1st 7817 df-2nd 7818 df-ec 8474 df-xrn 36480 df-ssr 36595 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |