Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfssr2 Structured version   Visualization version   GIF version

Theorem dfssr2 38455
Description: Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021.)
Assertion
Ref Expression
dfssr2 S = ((V × V) ∖ ran ( E ⋉ (V ∖ E )))

Proof of Theorem dfssr2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 5602 . . . . . . 7 (𝑧 E 𝑥𝑧𝑥)
2 brvdif 38217 . . . . . . . 8 (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧 E 𝑦)
3 epel 5602 . . . . . . . 8 (𝑧 E 𝑦𝑧𝑦)
42, 3xchbinx 334 . . . . . . 7 (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧𝑦)
51, 4anbi12i 627 . . . . . 6 ((𝑧 E 𝑥𝑧(V ∖ E )𝑦) ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑦))
65exbii 1846 . . . . 5 (∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦) ↔ ∃𝑧(𝑧𝑥 ∧ ¬ 𝑧𝑦))
76notbii 320 . . . 4 (¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦) ↔ ¬ ∃𝑧(𝑧𝑥 ∧ ¬ 𝑧𝑦))
8 dfss6 3998 . . . 4 (𝑥𝑦 ↔ ¬ ∃𝑧(𝑧𝑥 ∧ ¬ 𝑧𝑦))
97, 8bitr4i 278 . . 3 (¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦) ↔ 𝑥𝑦)
109opabbii 5233 . 2 {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)} = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
11 rnxrn 38354 . . . 4 ran ( E ⋉ (V ∖ E )) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)}
1211difeq2i 4146 . . 3 ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)})
13 vvdifopab 38216 . . 3 ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)}
1412, 13eqtri 2768 . 2 ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)}
15 df-ssr 38454 . 2 S = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
1610, 14, 153eqtr4ri 2779 1 S = ((V × V) ∖ ran ( E ⋉ (V ∖ E )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cdif 3973  wss 3976   class class class wbr 5166  {copab 5228   E cep 5598   × cxp 5698  ran crn 5701  cxrn 38134   S cssr 38138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-eprel 5599  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-1st 8030  df-2nd 8031  df-ec 8765  df-xrn 38327  df-ssr 38454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator