![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfssr2 | Structured version Visualization version GIF version |
Description: Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021.) |
Ref | Expression |
---|---|
dfssr2 | ⊢ S = ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epel 5541 | . . . . . . 7 ⊢ (𝑧 E 𝑥 ↔ 𝑧 ∈ 𝑥) | |
2 | brvdif 36767 | . . . . . . . 8 ⊢ (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧 E 𝑦) | |
3 | epel 5541 | . . . . . . . 8 ⊢ (𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦) | |
4 | 2, 3 | xchbinx 334 | . . . . . . 7 ⊢ (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧 ∈ 𝑦) |
5 | 1, 4 | anbi12i 628 | . . . . . 6 ⊢ ((𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) |
6 | 5 | exbii 1851 | . . . . 5 ⊢ (∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) |
7 | 6 | notbii 320 | . . . 4 ⊢ (¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ ¬ ∃𝑧(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) |
8 | dfss6 3934 | . . . 4 ⊢ (𝑥 ⊆ 𝑦 ↔ ¬ ∃𝑧(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) | |
9 | 7, 8 | bitr4i 278 | . . 3 ⊢ (¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ 𝑥 ⊆ 𝑦) |
10 | 9 | opabbii 5173 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ⊆ 𝑦} |
11 | rnxrn 36906 | . . . 4 ⊢ ran ( E ⋉ (V ∖ E )) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} | |
12 | 11 | difeq2i 4080 | . . 3 ⊢ ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)}) |
13 | vvdifopab 36766 | . . 3 ⊢ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} | |
14 | 12, 13 | eqtri 2761 | . 2 ⊢ ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} |
15 | df-ssr 37006 | . 2 ⊢ S = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ⊆ 𝑦} | |
16 | 10, 14, 15 | 3eqtr4ri 2772 | 1 ⊢ S = ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3444 ∖ cdif 3908 ⊆ wss 3911 class class class wbr 5106 {copab 5168 E cep 5537 × cxp 5632 ran crn 5635 ⋉ cxrn 36679 S cssr 36683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-eprel 5538 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fo 6503 df-fv 6505 df-1st 7922 df-2nd 7923 df-ec 8653 df-xrn 36879 df-ssr 37006 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |