| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfssr2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021.) |
| Ref | Expression |
|---|---|
| dfssr2 | ⊢ S = ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epel 5556 | . . . . . . 7 ⊢ (𝑧 E 𝑥 ↔ 𝑧 ∈ 𝑥) | |
| 2 | brvdif 38279 | . . . . . . . 8 ⊢ (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧 E 𝑦) | |
| 3 | epel 5556 | . . . . . . . 8 ⊢ (𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦) | |
| 4 | 2, 3 | xchbinx 334 | . . . . . . 7 ⊢ (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧 ∈ 𝑦) |
| 5 | 1, 4 | anbi12i 628 | . . . . . 6 ⊢ ((𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) |
| 6 | 5 | exbii 1848 | . . . . 5 ⊢ (∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) |
| 7 | 6 | notbii 320 | . . . 4 ⊢ (¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ ¬ ∃𝑧(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) |
| 8 | dfss6 3948 | . . . 4 ⊢ (𝑥 ⊆ 𝑦 ↔ ¬ ∃𝑧(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) | |
| 9 | 7, 8 | bitr4i 278 | . . 3 ⊢ (¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ 𝑥 ⊆ 𝑦) |
| 10 | 9 | opabbii 5186 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} |
| 11 | rnxrn 38416 | . . . 4 ⊢ ran ( E ⋉ (V ∖ E )) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} | |
| 12 | 11 | difeq2i 4098 | . . 3 ⊢ ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = ((V × V) ∖ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)}) |
| 13 | vvdifopab 38278 | . . 3 ⊢ ((V × V) ∖ {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)}) = {〈𝑥, 𝑦〉 ∣ ¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} | |
| 14 | 12, 13 | eqtri 2758 | . 2 ⊢ ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = {〈𝑥, 𝑦〉 ∣ ¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} |
| 15 | df-ssr 38516 | . 2 ⊢ S = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} | |
| 16 | 10, 14, 15 | 3eqtr4ri 2769 | 1 ⊢ S = ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 class class class wbr 5119 {copab 5181 E cep 5552 × cxp 5652 ran crn 5655 ⋉ cxrn 38198 S cssr 38202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-fv 6539 df-1st 7988 df-2nd 7989 df-ec 8721 df-xrn 38389 df-ssr 38516 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |