Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfssr2 Structured version   Visualization version   GIF version

Theorem dfssr2 37007
Description: Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021.)
Assertion
Ref Expression
dfssr2 S = ((V × V) ∖ ran ( E ⋉ (V ∖ E )))

Proof of Theorem dfssr2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 5541 . . . . . . 7 (𝑧 E 𝑥𝑧𝑥)
2 brvdif 36767 . . . . . . . 8 (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧 E 𝑦)
3 epel 5541 . . . . . . . 8 (𝑧 E 𝑦𝑧𝑦)
42, 3xchbinx 334 . . . . . . 7 (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧𝑦)
51, 4anbi12i 628 . . . . . 6 ((𝑧 E 𝑥𝑧(V ∖ E )𝑦) ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑦))
65exbii 1851 . . . . 5 (∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦) ↔ ∃𝑧(𝑧𝑥 ∧ ¬ 𝑧𝑦))
76notbii 320 . . . 4 (¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦) ↔ ¬ ∃𝑧(𝑧𝑥 ∧ ¬ 𝑧𝑦))
8 dfss6 3934 . . . 4 (𝑥𝑦 ↔ ¬ ∃𝑧(𝑧𝑥 ∧ ¬ 𝑧𝑦))
97, 8bitr4i 278 . . 3 (¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦) ↔ 𝑥𝑦)
109opabbii 5173 . 2 {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)} = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
11 rnxrn 36906 . . . 4 ran ( E ⋉ (V ∖ E )) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)}
1211difeq2i 4080 . . 3 ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)})
13 vvdifopab 36766 . . 3 ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)}
1412, 13eqtri 2761 . 2 ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥𝑧(V ∖ E )𝑦)}
15 df-ssr 37006 . 2 S = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
1610, 14, 153eqtr4ri 2772 1 S = ((V × V) ∖ ran ( E ⋉ (V ∖ E )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 397   = wceq 1542  wex 1782  wcel 2107  Vcvv 3444  cdif 3908  wss 3911   class class class wbr 5106  {copab 5168   E cep 5537   × cxp 5632  ran crn 5635  cxrn 36679   S cssr 36683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-eprel 5538  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fo 6503  df-fv 6505  df-1st 7922  df-2nd 7923  df-ec 8653  df-xrn 36879  df-ssr 37006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator