![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfssr2 | Structured version Visualization version GIF version |
Description: Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021.) |
Ref | Expression |
---|---|
dfssr2 | ⊢ S = ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epel 5583 | . . . . . . 7 ⊢ (𝑧 E 𝑥 ↔ 𝑧 ∈ 𝑥) | |
2 | brvdif 37124 | . . . . . . . 8 ⊢ (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧 E 𝑦) | |
3 | epel 5583 | . . . . . . . 8 ⊢ (𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦) | |
4 | 2, 3 | xchbinx 333 | . . . . . . 7 ⊢ (𝑧(V ∖ E )𝑦 ↔ ¬ 𝑧 ∈ 𝑦) |
5 | 1, 4 | anbi12i 627 | . . . . . 6 ⊢ ((𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) |
6 | 5 | exbii 1850 | . . . . 5 ⊢ (∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) |
7 | 6 | notbii 319 | . . . 4 ⊢ (¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ ¬ ∃𝑧(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) |
8 | dfss6 3971 | . . . 4 ⊢ (𝑥 ⊆ 𝑦 ↔ ¬ ∃𝑧(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦)) | |
9 | 7, 8 | bitr4i 277 | . . 3 ⊢ (¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦) ↔ 𝑥 ⊆ 𝑦) |
10 | 9 | opabbii 5215 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ⊆ 𝑦} |
11 | rnxrn 37263 | . . . 4 ⊢ ran ( E ⋉ (V ∖ E )) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} | |
12 | 11 | difeq2i 4119 | . . 3 ⊢ ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)}) |
13 | vvdifopab 37123 | . . 3 ⊢ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} | |
14 | 12, 13 | eqtri 2760 | . 2 ⊢ ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) = {⟨𝑥, 𝑦⟩ ∣ ¬ ∃𝑧(𝑧 E 𝑥 ∧ 𝑧(V ∖ E )𝑦)} |
15 | df-ssr 37363 | . 2 ⊢ S = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ⊆ 𝑦} | |
16 | 10, 14, 15 | 3eqtr4ri 2771 | 1 ⊢ S = ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 ∖ cdif 3945 ⊆ wss 3948 class class class wbr 5148 {copab 5210 E cep 5579 × cxp 5674 ran crn 5677 ⋉ cxrn 37037 S cssr 37041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-eprel 5580 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-1st 7974 df-2nd 7975 df-ec 8704 df-xrn 37236 df-ssr 37363 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |