Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfss2f | Structured version Visualization version GIF version |
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.) Avoid ax-13 2370. (Revised by Gino Giotto, 19-May-2023.) |
Ref | Expression |
---|---|
dfss2f.1 | ⊢ Ⅎ𝑥𝐴 |
dfss2f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
dfss2f | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3916 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵)) | |
2 | dfss2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
4 | dfss2f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
6 | 3, 5 | nfim 1898 | . . 3 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) |
7 | nfv 1916 | . . 3 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) | |
8 | eleq1w 2819 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
9 | eleq1w 2819 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | |
10 | 8, 9 | imbi12d 344 | . . 3 ⊢ (𝑧 = 𝑥 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) |
11 | 6, 7, 10 | cbvalv1 2337 | . 2 ⊢ (∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
12 | 1, 11 | bitri 274 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 ∈ wcel 2105 Ⅎwnfc 2884 ⊆ wss 3896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-v 3442 df-in 3903 df-ss 3913 |
This theorem is referenced by: dfss3f 3921 ssrd 3935 ssrmof 3995 ss2ab 4002 rankval4 9702 rabexgfGS 30978 ballotth 32640 dvcosre 43708 itgsinexplem1 43750 |
Copyright terms: Public domain | W3C validator |