![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfss2f | Structured version Visualization version GIF version |
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.) Avoid ax-13 2363. (Revised by Gino Giotto, 19-May-2023.) |
Ref | Expression |
---|---|
dfss2f.1 | ⊢ Ⅎ𝑥𝐴 |
dfss2f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
dfss2f | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3961 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵)) | |
2 | dfss2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2882 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
4 | dfss2f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2882 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐵 |
6 | 3, 5 | nfim 1891 | . . 3 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) |
7 | nfv 1909 | . . 3 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) | |
8 | eleq1w 2808 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
9 | eleq1w 2808 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | |
10 | 8, 9 | imbi12d 344 | . . 3 ⊢ (𝑧 = 𝑥 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) |
11 | 6, 7, 10 | cbvalv1 2329 | . 2 ⊢ (∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
12 | 1, 11 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 ∈ wcel 2098 Ⅎwnfc 2875 ⊆ wss 3941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-v 3468 df-in 3948 df-ss 3958 |
This theorem is referenced by: dfss3f 3966 ssrd 3980 ssrmof 4042 ss2ab 4049 rankval4 9859 rabexgfGS 32234 ballotth 34056 dvcosre 45174 itgsinexplem1 45216 |
Copyright terms: Public domain | W3C validator |