Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfss7 | Structured version Visualization version GIF version |
Description: Alternate definition of subclass relationship. (Contributed by AV, 1-Aug-2022.) |
Ref | Expression |
---|---|
dfss7 | ⊢ (𝐵 ⊆ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3909 | . 2 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐵) | |
2 | incom 4140 | . . . 4 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
3 | dfin5 3900 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} | |
4 | 2, 3 | eqtri 2768 | . . 3 ⊢ (𝐵 ∩ 𝐴) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
5 | 4 | eqeq1i 2745 | . 2 ⊢ ((𝐵 ∩ 𝐴) = 𝐵 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) |
6 | 1, 5 | bitri 274 | 1 ⊢ (𝐵 ⊆ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∈ wcel 2110 {crab 3070 ∩ cin 3891 ⊆ wss 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-rab 3075 df-in 3899 df-ss 3909 |
This theorem is referenced by: qusker 31545 nsgqusf1olem3 31596 f1oresf1orab 44749 |
Copyright terms: Public domain | W3C validator |