![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfss7 | Structured version Visualization version GIF version |
Description: Alternate definition of subclass relationship. (Contributed by AV, 1-Aug-2022.) |
Ref | Expression |
---|---|
dfss7 | ⊢ (𝐵 ⊆ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3981 | . 2 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐵) | |
2 | incom 4217 | . . . 4 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
3 | dfin5 3971 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} | |
4 | 2, 3 | eqtri 2763 | . . 3 ⊢ (𝐵 ∩ 𝐴) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
5 | 4 | eqeq1i 2740 | . 2 ⊢ ((𝐵 ∩ 𝐴) = 𝐵 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) |
6 | 1, 5 | bitri 275 | 1 ⊢ (𝐵 ⊆ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 {crab 3433 ∩ cin 3962 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-in 3970 df-ss 3980 |
This theorem is referenced by: qusker 33357 nsgqusf1olem3 33423 f1oresf1orab 47239 |
Copyright terms: Public domain | W3C validator |