| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfss7 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of subclass relationship. (Contributed by AV, 1-Aug-2022.) |
| Ref | Expression |
|---|---|
| dfss7 | ⊢ (𝐵 ⊆ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3935 | . 2 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐵) | |
| 2 | incom 4175 | . . . 4 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 3 | dfin5 3925 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} | |
| 4 | 2, 3 | eqtri 2753 | . . 3 ⊢ (𝐵 ∩ 𝐴) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| 5 | 4 | eqeq1i 2735 | . 2 ⊢ ((𝐵 ∩ 𝐴) = 𝐵 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) |
| 6 | 1, 5 | bitri 275 | 1 ⊢ (𝐵 ⊆ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3408 ∩ cin 3916 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-in 3924 df-ss 3934 |
| This theorem is referenced by: qusker 33327 nsgqusf1olem3 33393 f1oresf1orab 47294 |
| Copyright terms: Public domain | W3C validator |