MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss7 Structured version   Visualization version   GIF version

Theorem dfss7 4257
Description: Alternate definition of subclass relationship. (Contributed by AV, 1-Aug-2022.)
Assertion
Ref Expression
dfss7 (𝐵𝐴 ↔ {𝑥𝐴𝑥𝐵} = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfss7
StepHypRef Expression
1 dfss2 3981 . 2 (𝐵𝐴 ↔ (𝐵𝐴) = 𝐵)
2 incom 4217 . . . 4 (𝐵𝐴) = (𝐴𝐵)
3 dfin5 3971 . . . 4 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
42, 3eqtri 2763 . . 3 (𝐵𝐴) = {𝑥𝐴𝑥𝐵}
54eqeq1i 2740 . 2 ((𝐵𝐴) = 𝐵 ↔ {𝑥𝐴𝑥𝐵} = 𝐵)
61, 5bitri 275 1 (𝐵𝐴 ↔ {𝑥𝐴𝑥𝐵} = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2106  {crab 3433  cin 3962  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-in 3970  df-ss 3980
This theorem is referenced by:  qusker  33357  nsgqusf1olem3  33423  f1oresf1orab  47239
  Copyright terms: Public domain W3C validator