MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss7 Structured version   Visualization version   GIF version

Theorem dfss7 4174
Description: Alternate definition of subclass relationship. (Contributed by AV, 1-Aug-2022.)
Assertion
Ref Expression
dfss7 (𝐵𝐴 ↔ {𝑥𝐴𝑥𝐵} = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfss7
StepHypRef Expression
1 df-ss 3904 . 2 (𝐵𝐴 ↔ (𝐵𝐴) = 𝐵)
2 incom 4135 . . . 4 (𝐵𝐴) = (𝐴𝐵)
3 dfin5 3895 . . . 4 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
42, 3eqtri 2766 . . 3 (𝐵𝐴) = {𝑥𝐴𝑥𝐵}
54eqeq1i 2743 . 2 ((𝐵𝐴) = 𝐵 ↔ {𝑥𝐴𝑥𝐵} = 𝐵)
61, 5bitri 274 1 (𝐵𝐴 ↔ {𝑥𝐴𝑥𝐵} = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  {crab 3068  cin 3886  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-rab 3073  df-in 3894  df-ss 3904
This theorem is referenced by:  qusker  31549  nsgqusf1olem3  31600  f1oresf1orab  44781
  Copyright terms: Public domain W3C validator