![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfss7 | Structured version Visualization version GIF version |
Description: Alternate definition of subclass relationship. (Contributed by AV, 1-Aug-2022.) |
Ref | Expression |
---|---|
dfss7 | ⊢ (𝐵 ⊆ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3964 | . 2 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∩ 𝐴) = 𝐵) | |
2 | incom 4200 | . . . 4 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
3 | dfin5 3955 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} | |
4 | 2, 3 | eqtri 2758 | . . 3 ⊢ (𝐵 ∩ 𝐴) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
5 | 4 | eqeq1i 2735 | . 2 ⊢ ((𝐵 ∩ 𝐴) = 𝐵 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) |
6 | 1, 5 | bitri 274 | 1 ⊢ (𝐵 ⊆ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2104 {crab 3430 ∩ cin 3946 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-rab 3431 df-in 3954 df-ss 3964 |
This theorem is referenced by: qusker 32734 nsgqusf1olem3 32800 f1oresf1orab 46295 |
Copyright terms: Public domain | W3C validator |