Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexin Structured version   Visualization version   GIF version

Theorem rexin 4201
 Description: Restricted existential quantification over intersection. (Contributed by Peter Mazsa, 17-Dec-2018.)
Assertion
Ref Expression
rexin (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝜑))

Proof of Theorem rexin
StepHypRef Expression
1 elin 3935 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
21anbi1i 626 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
3 anass 472 . . 3 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝜑)))
42, 3bitri 278 . 2 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝜑)))
54rexbii2 3239 1 (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝜑))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   ∈ wcel 2115  ∃wrex 3134   ∩ cin 3918 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-rex 3139  df-v 3482  df-in 3926 This theorem is referenced by:  wefrc  5536  elidinxp  5898  bnd2  9319  subislly  22092  pcmplfin  31187  imaindm  33082
 Copyright terms: Public domain W3C validator