MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexin Structured version   Visualization version   GIF version

Theorem rexin 4200
Description: Restricted existential quantification over intersection. (Contributed by Peter Mazsa, 17-Dec-2018.)
Assertion
Ref Expression
rexin (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝜑))

Proof of Theorem rexin
StepHypRef Expression
1 elin 3918 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
21anbi1i 624 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
3 anass 468 . . 3 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝜑)))
42, 3bitri 275 . 2 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝜑)))
54rexbii2 3075 1 (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  wrex 3056  cin 3901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-v 3438  df-in 3909
This theorem is referenced by:  wefrc  5610  elidinxp  5993  imaindm  6246  bnd2  9786  subislly  23397  pcmplfin  33871  sswfaxreg  45026
  Copyright terms: Public domain W3C validator