MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexin Structured version   Visualization version   GIF version

Theorem rexin 4269
Description: Restricted existential quantification over intersection. (Contributed by Peter Mazsa, 17-Dec-2018.)
Assertion
Ref Expression
rexin (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝜑))

Proof of Theorem rexin
StepHypRef Expression
1 elin 3992 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
21anbi1i 623 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
3 anass 468 . . 3 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝜑)))
42, 3bitri 275 . 2 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝜑)))
54rexbii2 3096 1 (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  wrex 3076  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rex 3077  df-v 3490  df-in 3983
This theorem is referenced by:  wefrc  5694  elidinxp  6073  imaindm  6330  bnd2  9962  subislly  23510  pcmplfin  33806
  Copyright terms: Public domain W3C validator