| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfin5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.) |
| Ref | Expression |
|---|---|
| dfin5 | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-in 3924 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 2 | df-rab 3409 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 3 | 1, 2 | eqtr4i 2756 | 1 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 {crab 3408 ∩ cin 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-rab 3409 df-in 3924 |
| This theorem is referenced by: incom 4175 ineq1 4179 nfinOLD 4191 rabbi2dva 4192 dfss7 4217 dfepfr 5625 epfrc 5626 pmtrmvd 19393 ablfaclem3 20026 mretopd 22986 ptclsg 23509 xkopt 23549 iscmet3 25200 xrlimcnp 26885 ppiub 27122 xppreima 32576 fpwrelmapffs 32664 orvcelval 34467 sstotbnd2 37775 glbconN 39377 glbconNOLD 39378 2polssN 39916 rfovcnvf1od 44000 fsovcnvlem 44009 ntrneifv3 44078 ntrneifv4 44081 clsneifv3 44106 clsneifv4 44107 neicvgfv 44117 inpw 48817 |
| Copyright terms: Public domain | W3C validator |