| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfin5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.) |
| Ref | Expression |
|---|---|
| dfin5 | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-in 3918 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 2 | df-rab 3403 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 3 | 1, 2 | eqtr4i 2755 | 1 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3402 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-rab 3403 df-in 3918 |
| This theorem is referenced by: incom 4168 ineq1 4172 nfinOLD 4184 rabbi2dva 4185 dfss7 4210 dfepfr 5615 epfrc 5616 pmtrmvd 19362 ablfaclem3 19995 mretopd 22955 ptclsg 23478 xkopt 23518 iscmet3 25169 xrlimcnp 26854 ppiub 27091 xppreima 32542 fpwrelmapffs 32630 orvcelval 34433 sstotbnd2 37741 glbconN 39343 glbconNOLD 39344 2polssN 39882 rfovcnvf1od 43966 fsovcnvlem 43975 ntrneifv3 44044 ntrneifv4 44047 clsneifv3 44072 clsneifv4 44073 neicvgfv 44083 inpw 48786 |
| Copyright terms: Public domain | W3C validator |