MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin5 Structured version   Visualization version   GIF version

Theorem dfin5 3895
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
Assertion
Ref Expression
dfin5 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfin5
StepHypRef Expression
1 df-in 3894 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
2 df-rab 3073 . 2 {𝑥𝐴𝑥𝐵} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
31, 2eqtr4i 2769 1 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  {cab 2715  {crab 3068  cin 3886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-rab 3073  df-in 3894
This theorem is referenced by:  incom  4135  ineq1  4139  nfin  4150  rabbi2dva  4151  dfss7  4174  dfepfr  5574  epfrc  5575  pmtrmvd  19064  ablfaclem3  19690  mretopd  22243  ptclsg  22766  xkopt  22806  iscmet3  24457  xrlimcnp  26118  ppiub  26352  xppreima  30983  fpwrelmapffs  31069  orvcelval  32435  sstotbnd2  35932  glbconN  37391  2polssN  37929  rfovcnvf1od  41612  fsovcnvlem  41621  ntrneifv3  41692  ntrneifv4  41695  clsneifv3  41720  clsneifv4  41721  neicvgfv  41731  inpw  46164
  Copyright terms: Public domain W3C validator