MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin5 Structured version   Visualization version   GIF version

Theorem dfin5 3913
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
Assertion
Ref Expression
dfin5 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfin5
StepHypRef Expression
1 df-in 3912 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
2 df-rab 3397 . 2 {𝑥𝐴𝑥𝐵} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
31, 2eqtr4i 2755 1 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {cab 2707  {crab 3396  cin 3904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-rab 3397  df-in 3912
This theorem is referenced by:  incom  4162  ineq1  4166  nfinOLD  4178  rabbi2dva  4179  dfss7  4204  dfepfr  5607  epfrc  5608  pmtrmvd  19354  ablfaclem3  19987  mretopd  22996  ptclsg  23519  xkopt  23559  iscmet3  25210  xrlimcnp  26895  ppiub  27132  xppreima  32607  fpwrelmapffs  32696  orvcelval  34456  sstotbnd2  37773  glbconN  39375  glbconNOLD  39376  2polssN  39914  rfovcnvf1od  43997  fsovcnvlem  44006  ntrneifv3  44075  ntrneifv4  44078  clsneifv3  44103  clsneifv4  44104  neicvgfv  44114  inpw  48829
  Copyright terms: Public domain W3C validator