MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin5 Structured version   Visualization version   GIF version

Theorem dfin5 3984
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
Assertion
Ref Expression
dfin5 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfin5
StepHypRef Expression
1 df-in 3983 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
2 df-rab 3444 . 2 {𝑥𝐴𝑥𝐵} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
31, 2eqtr4i 2771 1 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  {cab 2717  {crab 3443  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-rab 3444  df-in 3983
This theorem is referenced by:  incom  4230  ineq1  4234  nfinOLD  4246  rabbi2dva  4247  dfss7  4270  dfepfr  5684  epfrc  5685  pmtrmvd  19498  ablfaclem3  20131  mretopd  23121  ptclsg  23644  xkopt  23684  iscmet3  25346  xrlimcnp  27029  ppiub  27266  xppreima  32664  fpwrelmapffs  32748  orvcelval  34433  sstotbnd2  37734  glbconN  39333  glbconNOLD  39334  2polssN  39872  rfovcnvf1od  43966  fsovcnvlem  43975  ntrneifv3  44044  ntrneifv4  44047  clsneifv3  44072  clsneifv4  44073  neicvgfv  44083  inpw  48550
  Copyright terms: Public domain W3C validator