Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfin5 | Structured version Visualization version GIF version |
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.) |
Ref | Expression |
---|---|
dfin5 | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-in 3890 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
2 | df-rab 3072 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
3 | 1, 2 | eqtr4i 2769 | 1 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 {crab 3067 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-rab 3072 df-in 3890 |
This theorem is referenced by: incom 4131 ineq1 4136 nfin 4147 rabbi2dva 4148 dfss7 4171 dfepfr 5565 epfrc 5566 pmtrmvd 18979 ablfaclem3 19605 mretopd 22151 ptclsg 22674 xkopt 22714 iscmet3 24362 xrlimcnp 26023 ppiub 26257 xppreima 30884 fpwrelmapffs 30971 orvcelval 32335 sstotbnd2 35859 glbconN 37318 2polssN 37856 rfovcnvf1od 41501 fsovcnvlem 41510 ntrneifv3 41581 ntrneifv4 41584 clsneifv3 41609 clsneifv4 41610 neicvgfv 41620 inpw 46052 |
Copyright terms: Public domain | W3C validator |