| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfin5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.) |
| Ref | Expression |
|---|---|
| dfin5 | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-in 3921 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 2 | df-rab 3406 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 3 | 1, 2 | eqtr4i 2755 | 1 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3405 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-rab 3406 df-in 3921 |
| This theorem is referenced by: incom 4172 ineq1 4176 nfinOLD 4188 rabbi2dva 4189 dfss7 4214 dfepfr 5622 epfrc 5623 pmtrmvd 19386 ablfaclem3 20019 mretopd 22979 ptclsg 23502 xkopt 23542 iscmet3 25193 xrlimcnp 26878 ppiub 27115 xppreima 32569 fpwrelmapffs 32657 orvcelval 34460 sstotbnd2 37768 glbconN 39370 glbconNOLD 39371 2polssN 39909 rfovcnvf1od 43993 fsovcnvlem 44002 ntrneifv3 44071 ntrneifv4 44074 clsneifv3 44099 clsneifv4 44100 neicvgfv 44110 inpw 48813 |
| Copyright terms: Public domain | W3C validator |