![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfin5 | Structured version Visualization version GIF version |
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.) |
Ref | Expression |
---|---|
dfin5 | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-in 3983 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
2 | df-rab 3444 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
3 | 1, 2 | eqtr4i 2771 | 1 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 {crab 3443 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-rab 3444 df-in 3983 |
This theorem is referenced by: incom 4230 ineq1 4234 nfinOLD 4246 rabbi2dva 4247 dfss7 4270 dfepfr 5684 epfrc 5685 pmtrmvd 19498 ablfaclem3 20131 mretopd 23121 ptclsg 23644 xkopt 23684 iscmet3 25346 xrlimcnp 27029 ppiub 27266 xppreima 32664 fpwrelmapffs 32748 orvcelval 34433 sstotbnd2 37734 glbconN 39333 glbconNOLD 39334 2polssN 39872 rfovcnvf1od 43966 fsovcnvlem 43975 ntrneifv3 44044 ntrneifv4 44047 clsneifv3 44072 clsneifv4 44073 neicvgfv 44083 inpw 48550 |
Copyright terms: Public domain | W3C validator |