| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfin5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.) |
| Ref | Expression |
|---|---|
| dfin5 | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-in 3905 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 2 | df-rab 3397 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 3 | 1, 2 | eqtr4i 2759 | 1 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 {crab 3396 ∩ cin 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-rab 3397 df-in 3905 |
| This theorem is referenced by: incom 4158 ineq1 4162 nfinOLD 4174 rabbi2dva 4175 dfss7 4200 dfepfr 5605 epfrc 5606 pmtrmvd 19376 ablfaclem3 20009 mretopd 23027 ptclsg 23550 xkopt 23590 iscmet3 25240 xrlimcnp 26925 ppiub 27162 xppreima 32649 fpwrelmapffs 32741 orvcelval 34554 sstotbnd2 37887 glbconN 39549 2polssN 40087 rfovcnvf1od 44161 fsovcnvlem 44170 ntrneifv3 44239 ntrneifv4 44242 clsneifv3 44267 clsneifv4 44268 neicvgfv 44278 inpw 48986 |
| Copyright terms: Public domain | W3C validator |