| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfin5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.) |
| Ref | Expression |
|---|---|
| dfin5 | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-in 3912 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 2 | df-rab 3397 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 3 | 1, 2 | eqtr4i 2755 | 1 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3396 ∩ cin 3904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-rab 3397 df-in 3912 |
| This theorem is referenced by: incom 4162 ineq1 4166 nfinOLD 4178 rabbi2dva 4179 dfss7 4204 dfepfr 5607 epfrc 5608 pmtrmvd 19354 ablfaclem3 19987 mretopd 22996 ptclsg 23519 xkopt 23559 iscmet3 25210 xrlimcnp 26895 ppiub 27132 xppreima 32607 fpwrelmapffs 32696 orvcelval 34456 sstotbnd2 37773 glbconN 39375 glbconNOLD 39376 2polssN 39914 rfovcnvf1od 43997 fsovcnvlem 44006 ntrneifv3 44075 ntrneifv4 44078 clsneifv3 44103 clsneifv4 44104 neicvgfv 44114 inpw 48829 |
| Copyright terms: Public domain | W3C validator |