![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfin5 | Structured version Visualization version GIF version |
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.) |
Ref | Expression |
---|---|
dfin5 | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-in 3805 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
2 | df-rab 3126 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
3 | 1, 2 | eqtr4i 2852 | 1 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 = wceq 1658 ∈ wcel 2166 {cab 2811 {crab 3121 ∩ cin 3797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1881 df-cleq 2818 df-rab 3126 df-in 3805 |
This theorem is referenced by: nfin 4045 rabbi2dva 4046 dfepfr 5327 epfrc 5328 pmtrmvd 18226 ablfaclem3 18840 mretopd 21267 ptclsg 21789 xkopt 21829 iscmet3 23461 xrlimcnp 25108 ppiub 25342 xppreima 29998 fpwrelmapffs 30057 orvcelval 31076 sstotbnd2 34115 glbconN 35452 2polssN 35990 rfovcnvf1od 39138 fsovcnvlem 39147 ntrneifv3 39220 ntrneifv4 39223 clsneifv3 39248 clsneifv4 39249 neicvgfv 39259 dfss7 42180 |
Copyright terms: Public domain | W3C validator |