MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin5 Structured version   Visualization version   GIF version

Theorem dfin5 3971
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
Assertion
Ref Expression
dfin5 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfin5
StepHypRef Expression
1 df-in 3970 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
2 df-rab 3434 . 2 {𝑥𝐴𝑥𝐵} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
31, 2eqtr4i 2766 1 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  {cab 2712  {crab 3433  cin 3962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-cleq 2727  df-rab 3434  df-in 3970
This theorem is referenced by:  incom  4217  ineq1  4221  nfinOLD  4233  rabbi2dva  4234  dfss7  4257  dfepfr  5673  epfrc  5674  pmtrmvd  19489  ablfaclem3  20122  mretopd  23116  ptclsg  23639  xkopt  23679  iscmet3  25341  xrlimcnp  27026  ppiub  27263  xppreima  32662  fpwrelmapffs  32752  orvcelval  34450  sstotbnd2  37761  glbconN  39359  glbconNOLD  39360  2polssN  39898  rfovcnvf1od  43994  fsovcnvlem  44003  ntrneifv3  44072  ntrneifv4  44075  clsneifv3  44100  clsneifv4  44101  neicvgfv  44111  inpw  48667
  Copyright terms: Public domain W3C validator