MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin5 Structured version   Visualization version   GIF version

Theorem dfin5 3891
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
Assertion
Ref Expression
dfin5 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfin5
StepHypRef Expression
1 df-in 3890 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
2 df-rab 3072 . 2 {𝑥𝐴𝑥𝐵} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
31, 2eqtr4i 2769 1 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  {cab 2715  {crab 3067  cin 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-rab 3072  df-in 3890
This theorem is referenced by:  incom  4131  ineq1  4136  nfin  4147  rabbi2dva  4148  dfss7  4171  dfepfr  5565  epfrc  5566  pmtrmvd  18979  ablfaclem3  19605  mretopd  22151  ptclsg  22674  xkopt  22714  iscmet3  24362  xrlimcnp  26023  ppiub  26257  xppreima  30884  fpwrelmapffs  30971  orvcelval  32335  sstotbnd2  35859  glbconN  37318  2polssN  37856  rfovcnvf1od  41501  fsovcnvlem  41510  ntrneifv3  41581  ntrneifv4  41584  clsneifv3  41609  clsneifv4  41610  neicvgfv  41620  inpw  46052
  Copyright terms: Public domain W3C validator