MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin5 Structured version   Visualization version   GIF version

Theorem dfin5 3957
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
Assertion
Ref Expression
dfin5 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfin5
StepHypRef Expression
1 df-in 3956 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
2 df-rab 3434 . 2 {𝑥𝐴𝑥𝐵} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
31, 2eqtr4i 2764 1 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  {cab 2710  {crab 3433  cin 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-cleq 2725  df-rab 3434  df-in 3956
This theorem is referenced by:  incom  4202  ineq1  4206  nfin  4217  rabbi2dva  4218  dfss7  4241  dfepfr  5662  epfrc  5663  pmtrmvd  19324  ablfaclem3  19957  mretopd  22596  ptclsg  23119  xkopt  23159  iscmet3  24810  xrlimcnp  26473  ppiub  26707  xppreima  31871  fpwrelmapffs  31959  orvcelval  33467  sstotbnd2  36642  glbconN  38247  glbconNOLD  38248  2polssN  38786  rfovcnvf1od  42755  fsovcnvlem  42764  ntrneifv3  42833  ntrneifv4  42836  clsneifv3  42861  clsneifv4  42862  neicvgfv  42872  inpw  47503
  Copyright terms: Public domain W3C validator