| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfin5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.) |
| Ref | Expression |
|---|---|
| dfin5 | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-in 3931 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 2 | df-rab 3414 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 3 | 1, 2 | eqtr4i 2760 | 1 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 {crab 3413 ∩ cin 3923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-rab 3414 df-in 3931 |
| This theorem is referenced by: incom 4182 ineq1 4186 nfinOLD 4198 rabbi2dva 4199 dfss7 4224 dfepfr 5635 epfrc 5636 pmtrmvd 19422 ablfaclem3 20055 mretopd 23015 ptclsg 23538 xkopt 23578 iscmet3 25230 xrlimcnp 26914 ppiub 27151 xppreima 32556 fpwrelmapffs 32646 orvcelval 34409 sstotbnd2 37719 glbconN 39316 glbconNOLD 39317 2polssN 39855 rfovcnvf1od 43953 fsovcnvlem 43962 ntrneifv3 44031 ntrneifv4 44034 clsneifv3 44059 clsneifv4 44060 neicvgfv 44070 inpw 48684 |
| Copyright terms: Public domain | W3C validator |