| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfin5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.) |
| Ref | Expression |
|---|---|
| dfin5 | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-in 3933 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 2 | df-rab 3416 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 3 | 1, 2 | eqtr4i 2761 | 1 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 {crab 3415 ∩ cin 3925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-rab 3416 df-in 3933 |
| This theorem is referenced by: incom 4184 ineq1 4188 nfinOLD 4200 rabbi2dva 4201 dfss7 4226 dfepfr 5638 epfrc 5639 pmtrmvd 19437 ablfaclem3 20070 mretopd 23030 ptclsg 23553 xkopt 23593 iscmet3 25245 xrlimcnp 26930 ppiub 27167 xppreima 32623 fpwrelmapffs 32711 orvcelval 34501 sstotbnd2 37798 glbconN 39395 glbconNOLD 39396 2polssN 39934 rfovcnvf1od 44028 fsovcnvlem 44037 ntrneifv3 44106 ntrneifv4 44109 clsneifv3 44134 clsneifv4 44135 neicvgfv 44145 inpw 48803 |
| Copyright terms: Public domain | W3C validator |