Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfin5 | Structured version Visualization version GIF version |
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.) |
Ref | Expression |
---|---|
dfin5 | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-in 3894 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
2 | df-rab 3073 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
3 | 1, 2 | eqtr4i 2769 | 1 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 {crab 3068 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-rab 3073 df-in 3894 |
This theorem is referenced by: incom 4135 ineq1 4139 nfin 4150 rabbi2dva 4151 dfss7 4174 dfepfr 5574 epfrc 5575 pmtrmvd 19064 ablfaclem3 19690 mretopd 22243 ptclsg 22766 xkopt 22806 iscmet3 24457 xrlimcnp 26118 ppiub 26352 xppreima 30983 fpwrelmapffs 31069 orvcelval 32435 sstotbnd2 35932 glbconN 37391 2polssN 37929 rfovcnvf1od 41612 fsovcnvlem 41621 ntrneifv3 41692 ntrneifv4 41695 clsneifv3 41720 clsneifv4 41721 neicvgfv 41731 inpw 46164 |
Copyright terms: Public domain | W3C validator |