| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfin5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.) |
| Ref | Expression |
|---|---|
| dfin5 | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-in 3904 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 2 | df-rab 3396 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 3 | 1, 2 | eqtr4i 2757 | 1 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 {crab 3395 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-rab 3396 df-in 3904 |
| This theorem is referenced by: incom 4154 ineq1 4158 nfinOLD 4170 rabbi2dva 4171 dfss7 4196 dfepfr 5595 epfrc 5596 pmtrmvd 19363 ablfaclem3 19996 mretopd 23002 ptclsg 23525 xkopt 23565 iscmet3 25215 xrlimcnp 26900 ppiub 27137 xppreima 32619 fpwrelmapffs 32709 orvcelval 34474 sstotbnd2 37814 glbconN 39416 2polssN 39954 rfovcnvf1od 44037 fsovcnvlem 44046 ntrneifv3 44115 ntrneifv4 44118 clsneifv3 44143 clsneifv4 44144 neicvgfv 44154 inpw 48856 |
| Copyright terms: Public domain | W3C validator |