Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1oresf1orab Structured version   Visualization version   GIF version

Theorem f1oresf1orab 47235
Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 1-Aug-2022.)
Hypotheses
Ref Expression
f1oresf1orab.1 𝐹 = (𝑥𝐴𝐶)
f1oresf1orab.2 (𝜑𝐹:𝐴1-1-onto𝐵)
f1oresf1orab.3 (𝜑𝐷𝐴)
f1oresf1orab.4 ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝑥𝐷))
Assertion
Ref Expression
f1oresf1orab (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜒(𝑦)   𝐶(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem f1oresf1orab
StepHypRef Expression
1 f1oresf1orab.1 . . 3 𝐹 = (𝑥𝐴𝐶)
2 f1oresf1orab.2 . . 3 (𝜑𝐹:𝐴1-1-onto𝐵)
3 f1oresf1orab.4 . . 3 ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝑥𝐷))
41, 2, 3f1oresrab 7126 . 2 (𝜑 → (𝐹 ↾ {𝑥𝐴𝑥𝐷}):{𝑥𝐴𝑥𝐷}–1-1-onto→{𝑦𝐵𝜒})
5 f1oresf1orab.3 . . . . . 6 (𝜑𝐷𝐴)
6 dfss7 4231 . . . . . 6 (𝐷𝐴 ↔ {𝑥𝐴𝑥𝐷} = 𝐷)
75, 6sylib 218 . . . . 5 (𝜑 → {𝑥𝐴𝑥𝐷} = 𝐷)
87eqcomd 2740 . . . 4 (𝜑𝐷 = {𝑥𝐴𝑥𝐷})
98reseq2d 5977 . . 3 (𝜑 → (𝐹𝐷) = (𝐹 ↾ {𝑥𝐴𝑥𝐷}))
10 eqidd 2735 . . 3 (𝜑 → {𝑦𝐵𝜒} = {𝑦𝐵𝜒})
119, 8, 10f1oeq123d 6821 . 2 (𝜑 → ((𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒} ↔ (𝐹 ↾ {𝑥𝐴𝑥𝐷}):{𝑥𝐴𝑥𝐷}–1-1-onto→{𝑦𝐵𝜒}))
124, 11mpbird 257 1 (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1539  wcel 2107  {crab 3419  wss 3931  cmpt 5205  cres 5667  1-1-ontowf1o 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator