Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1oresf1orab Structured version   Visualization version   GIF version

Theorem f1oresf1orab 46807
Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 1-Aug-2022.)
Hypotheses
Ref Expression
f1oresf1orab.1 𝐹 = (𝑥𝐴𝐶)
f1oresf1orab.2 (𝜑𝐹:𝐴1-1-onto𝐵)
f1oresf1orab.3 (𝜑𝐷𝐴)
f1oresf1orab.4 ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝑥𝐷))
Assertion
Ref Expression
f1oresf1orab (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜒(𝑦)   𝐶(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem f1oresf1orab
StepHypRef Expression
1 f1oresf1orab.1 . . 3 𝐹 = (𝑥𝐴𝐶)
2 f1oresf1orab.2 . . 3 (𝜑𝐹:𝐴1-1-onto𝐵)
3 f1oresf1orab.4 . . 3 ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝑥𝐷))
41, 2, 3f1oresrab 7136 . 2 (𝜑 → (𝐹 ↾ {𝑥𝐴𝑥𝐷}):{𝑥𝐴𝑥𝐷}–1-1-onto→{𝑦𝐵𝜒})
5 f1oresf1orab.3 . . . . . 6 (𝜑𝐷𝐴)
6 dfss7 4239 . . . . . 6 (𝐷𝐴 ↔ {𝑥𝐴𝑥𝐷} = 𝐷)
75, 6sylib 217 . . . . 5 (𝜑 → {𝑥𝐴𝑥𝐷} = 𝐷)
87eqcomd 2731 . . . 4 (𝜑𝐷 = {𝑥𝐴𝑥𝐷})
98reseq2d 5985 . . 3 (𝜑 → (𝐹𝐷) = (𝐹 ↾ {𝑥𝐴𝑥𝐷}))
10 eqidd 2726 . . 3 (𝜑 → {𝑦𝐵𝜒} = {𝑦𝐵𝜒})
119, 8, 10f1oeq123d 6832 . 2 (𝜑 → ((𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒} ↔ (𝐹 ↾ {𝑥𝐴𝑥𝐷}):{𝑥𝐴𝑥𝐷}–1-1-onto→{𝑦𝐵𝜒}))
124, 11mpbird 256 1 (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098  {crab 3418  wss 3944  cmpt 5232  cres 5680  1-1-ontowf1o 6548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator