Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1oresf1orab Structured version   Visualization version   GIF version

Theorem f1oresf1orab 46296
Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 1-Aug-2022.)
Hypotheses
Ref Expression
f1oresf1orab.1 𝐹 = (𝑥𝐴𝐶)
f1oresf1orab.2 (𝜑𝐹:𝐴1-1-onto𝐵)
f1oresf1orab.3 (𝜑𝐷𝐴)
f1oresf1orab.4 ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝑥𝐷))
Assertion
Ref Expression
f1oresf1orab (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜒(𝑦)   𝐶(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem f1oresf1orab
StepHypRef Expression
1 f1oresf1orab.1 . . 3 𝐹 = (𝑥𝐴𝐶)
2 f1oresf1orab.2 . . 3 (𝜑𝐹:𝐴1-1-onto𝐵)
3 f1oresf1orab.4 . . 3 ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝑥𝐷))
41, 2, 3f1oresrab 7127 . 2 (𝜑 → (𝐹 ↾ {𝑥𝐴𝑥𝐷}):{𝑥𝐴𝑥𝐷}–1-1-onto→{𝑦𝐵𝜒})
5 f1oresf1orab.3 . . . . . 6 (𝜑𝐷𝐴)
6 dfss7 4240 . . . . . 6 (𝐷𝐴 ↔ {𝑥𝐴𝑥𝐷} = 𝐷)
75, 6sylib 217 . . . . 5 (𝜑 → {𝑥𝐴𝑥𝐷} = 𝐷)
87eqcomd 2737 . . . 4 (𝜑𝐷 = {𝑥𝐴𝑥𝐷})
98reseq2d 5981 . . 3 (𝜑 → (𝐹𝐷) = (𝐹 ↾ {𝑥𝐴𝑥𝐷}))
10 eqidd 2732 . . 3 (𝜑 → {𝑦𝐵𝜒} = {𝑦𝐵𝜒})
119, 8, 10f1oeq123d 6827 . 2 (𝜑 → ((𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒} ↔ (𝐹 ↾ {𝑥𝐴𝑥𝐷}):{𝑥𝐴𝑥𝐷}–1-1-onto→{𝑦𝐵𝜒}))
124, 11mpbird 257 1 (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1540  wcel 2105  {crab 3431  wss 3948  cmpt 5231  cres 5678  1-1-ontowf1o 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator