| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1oresf1orab | Structured version Visualization version GIF version | ||
| Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 1-Aug-2022.) |
| Ref | Expression |
|---|---|
| f1oresf1orab.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| f1oresf1orab.2 | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| f1oresf1orab.3 | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
| f1oresf1orab.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → (𝜒 ↔ 𝑥 ∈ 𝐷)) |
| Ref | Expression |
|---|---|
| f1oresf1orab | ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oresf1orab.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 2 | f1oresf1orab.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | |
| 3 | f1oresf1orab.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → (𝜒 ↔ 𝑥 ∈ 𝐷)) | |
| 4 | 1, 2, 3 | f1oresrab 7126 | . 2 ⊢ (𝜑 → (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷}):{𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
| 5 | f1oresf1orab.3 | . . . . . 6 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | |
| 6 | dfss7 4231 | . . . . . 6 ⊢ (𝐷 ⊆ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷} = 𝐷) | |
| 7 | 5, 6 | sylib 218 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷} = 𝐷) |
| 8 | 7 | eqcomd 2740 | . . . 4 ⊢ (𝜑 → 𝐷 = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷}) |
| 9 | 8 | reseq2d 5977 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐷) = (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷})) |
| 10 | eqidd 2735 | . . 3 ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝜒} = {𝑦 ∈ 𝐵 ∣ 𝜒}) | |
| 11 | 9, 8, 10 | f1oeq123d 6821 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒} ↔ (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷}):{𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒})) |
| 12 | 4, 11 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {crab 3419 ⊆ wss 3931 ↦ cmpt 5205 ↾ cres 5667 –1-1-onto→wf1o 6539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |