Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1oresf1orab | Structured version Visualization version GIF version |
Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 1-Aug-2022.) |
Ref | Expression |
---|---|
f1oresf1orab.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
f1oresf1orab.2 | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
f1oresf1orab.3 | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
f1oresf1orab.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → (𝜒 ↔ 𝑥 ∈ 𝐷)) |
Ref | Expression |
---|---|
f1oresf1orab | ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oresf1orab.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
2 | f1oresf1orab.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | |
3 | f1oresf1orab.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → (𝜒 ↔ 𝑥 ∈ 𝐷)) | |
4 | 1, 2, 3 | f1oresrab 6981 | . 2 ⊢ (𝜑 → (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷}):{𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
5 | f1oresf1orab.3 | . . . . . 6 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | |
6 | dfss7 4171 | . . . . . 6 ⊢ (𝐷 ⊆ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷} = 𝐷) | |
7 | 5, 6 | sylib 217 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷} = 𝐷) |
8 | 7 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → 𝐷 = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷}) |
9 | 8 | reseq2d 5880 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐷) = (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷})) |
10 | eqidd 2739 | . . 3 ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝜒} = {𝑦 ∈ 𝐵 ∣ 𝜒}) | |
11 | 9, 8, 10 | f1oeq123d 6694 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒} ↔ (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷}):{𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒})) |
12 | 4, 11 | mpbird 256 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {crab 3067 ⊆ wss 3883 ↦ cmpt 5153 ↾ cres 5582 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |