Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1oresf1orab Structured version   Visualization version   GIF version

Theorem f1oresf1orab 43478
Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 1-Aug-2022.)
Hypotheses
Ref Expression
f1oresf1orab.1 𝐹 = (𝑥𝐴𝐶)
f1oresf1orab.2 (𝜑𝐹:𝐴1-1-onto𝐵)
f1oresf1orab.3 (𝜑𝐷𝐴)
f1oresf1orab.4 ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝑥𝐷))
Assertion
Ref Expression
f1oresf1orab (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜒(𝑦)   𝐶(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem f1oresf1orab
StepHypRef Expression
1 f1oresf1orab.1 . . 3 𝐹 = (𝑥𝐴𝐶)
2 f1oresf1orab.2 . . 3 (𝜑𝐹:𝐴1-1-onto𝐵)
3 f1oresf1orab.4 . . 3 ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝑥𝐷))
41, 2, 3f1oresrab 6882 . 2 (𝜑 → (𝐹 ↾ {𝑥𝐴𝑥𝐷}):{𝑥𝐴𝑥𝐷}–1-1-onto→{𝑦𝐵𝜒})
5 f1oresf1orab.3 . . . . . 6 (𝜑𝐷𝐴)
6 dfss7 4215 . . . . . 6 (𝐷𝐴 ↔ {𝑥𝐴𝑥𝐷} = 𝐷)
75, 6sylib 220 . . . . 5 (𝜑 → {𝑥𝐴𝑥𝐷} = 𝐷)
87eqcomd 2825 . . . 4 (𝜑𝐷 = {𝑥𝐴𝑥𝐷})
98reseq2d 5846 . . 3 (𝜑 → (𝐹𝐷) = (𝐹 ↾ {𝑥𝐴𝑥𝐷}))
10 eqidd 2820 . . 3 (𝜑 → {𝑦𝐵𝜒} = {𝑦𝐵𝜒})
119, 8, 10f1oeq123d 6603 . 2 (𝜑 → ((𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒} ↔ (𝐹 ↾ {𝑥𝐴𝑥𝐷}):{𝑥𝐴𝑥𝐷}–1-1-onto→{𝑦𝐵𝜒}))
124, 11mpbird 259 1 (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1082   = wceq 1531  wcel 2108  {crab 3140  wss 3934  cmpt 5137  cres 5550  1-1-ontowf1o 6347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator