| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1oresf1orab | Structured version Visualization version GIF version | ||
| Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 1-Aug-2022.) |
| Ref | Expression |
|---|---|
| f1oresf1orab.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| f1oresf1orab.2 | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| f1oresf1orab.3 | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
| f1oresf1orab.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → (𝜒 ↔ 𝑥 ∈ 𝐷)) |
| Ref | Expression |
|---|---|
| f1oresf1orab | ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oresf1orab.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 2 | f1oresf1orab.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | |
| 3 | f1oresf1orab.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → (𝜒 ↔ 𝑥 ∈ 𝐷)) | |
| 4 | 1, 2, 3 | f1oresrab 7106 | . 2 ⊢ (𝜑 → (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷}):{𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
| 5 | f1oresf1orab.3 | . . . . . 6 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | |
| 6 | dfss7 4222 | . . . . . 6 ⊢ (𝐷 ⊆ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷} = 𝐷) | |
| 7 | 5, 6 | sylib 218 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷} = 𝐷) |
| 8 | 7 | eqcomd 2736 | . . . 4 ⊢ (𝜑 → 𝐷 = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷}) |
| 9 | 8 | reseq2d 5958 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐷) = (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷})) |
| 10 | eqidd 2731 | . . 3 ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝜒} = {𝑦 ∈ 𝐵 ∣ 𝜒}) | |
| 11 | 9, 8, 10 | f1oeq123d 6801 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒} ↔ (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷}):{𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒})) |
| 12 | 4, 11 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3411 ⊆ wss 3922 ↦ cmpt 5196 ↾ cres 5648 –1-1-onto→wf1o 6518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |