Proof of Theorem nsgqusf1olem3
Step | Hyp | Ref
| Expression |
1 | | nsgqusf1o.f |
. . . . 5
⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
2 | 1 | elrnmpt 5797 |
. . . 4
⊢ (ℎ ∈ V → (ℎ ∈ ran 𝐹 ↔ ∃𝑓 ∈ 𝑇 ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓})) |
3 | 2 | elv 3415 |
. . 3
⊢ (ℎ ∈ ran 𝐹 ↔ ∃𝑓 ∈ 𝑇 ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
4 | | nsgqusf1o.s |
. . . . 5
⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} |
5 | 4 | rabeq2i 3400 |
. . . 4
⊢ (ℎ ∈ 𝑆 ↔ (ℎ ∈ (SubGrp‘𝐺) ∧ 𝑁 ⊆ ℎ)) |
6 | | nsgqusf1o.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
7 | | nsgqusf1o.t |
. . . . . . . 8
⊢ 𝑇 = (SubGrp‘𝑄) |
8 | | nsgqusf1o.1 |
. . . . . . . 8
⊢ ≤ =
(le‘(toInc‘𝑆)) |
9 | | nsgqusf1o.2 |
. . . . . . . 8
⊢ ≲ =
(le‘(toInc‘𝑇)) |
10 | | nsgqusf1o.q |
. . . . . . . 8
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
11 | | nsgqusf1o.p |
. . . . . . . 8
⊢ ⊕ =
(LSSum‘𝐺) |
12 | | nsgqusf1o.e |
. . . . . . . 8
⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
13 | | nsgqusf1o.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
14 | 6, 4, 7, 8, 9, 10,
11, 12, 1, 13 | nsgqusf1olem1 31119 |
. . . . . . 7
⊢ (((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ 𝑇) |
15 | | eleq2 2840 |
. . . . . . . . . 10
⊢ (𝑓 = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) → (({𝑎} ⊕ 𝑁) ∈ 𝑓 ↔ ({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)))) |
16 | 15 | rabbidv 3392 |
. . . . . . . . 9
⊢ (𝑓 = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))}) |
17 | 16 | eqeq2d 2769 |
. . . . . . . 8
⊢ (𝑓 = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) → (ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ↔ ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))})) |
18 | 17 | adantl 485 |
. . . . . . 7
⊢ ((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑓 = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) → (ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ↔ ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))})) |
19 | | nfv 1915 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) |
20 | | nfmpt1 5130 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥(𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) |
21 | 20 | nfrn 5793 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥ran
(𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) |
22 | 21 | nfel2 2937 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) |
23 | 19, 22 | nfan 1900 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ ({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
24 | | nsgsubg 18377 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) |
25 | 13, 24 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
26 | | subgrcl 18351 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐺 ∈ Grp) |
28 | 27 | ad4antr 731 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) → 𝐺 ∈ Grp) |
29 | 28 | adantr 484 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) ∧ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) → 𝐺 ∈ Grp) |
30 | 6 | subgss 18347 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ ∈ (SubGrp‘𝐺) → ℎ ⊆ 𝐵) |
31 | 30 | ad3antlr 730 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) → ℎ ⊆ 𝐵) |
32 | 31 | sselda 3892 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) → 𝑥 ∈ 𝐵) |
33 | 32 | adantr 484 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) ∧ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) → 𝑥 ∈ 𝐵) |
34 | | simplr 768 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) → 𝑎 ∈ 𝐵) |
35 | 34 | adantr 484 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) ∧ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) → 𝑎 ∈ 𝐵) |
36 | | eqid 2758 |
. . . . . . . . . . . . . . 15
⊢
(+g‘𝐺) = (+g‘𝐺) |
37 | | eqid 2758 |
. . . . . . . . . . . . . . 15
⊢
(invg‘𝐺) = (invg‘𝐺) |
38 | 6, 36, 37 | grpasscan1 18229 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝑥(+g‘𝐺)(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑎)) = 𝑎) |
39 | 29, 33, 35, 38 | syl3anc 1368 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) ∧ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) → (𝑥(+g‘𝐺)(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑎)) = 𝑎) |
40 | | simp-5r 785 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) ∧ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) → ℎ ∈ (SubGrp‘𝐺)) |
41 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) ∧ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) → 𝑥 ∈ ℎ) |
42 | | simp-4r 783 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) ∧ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) → 𝑁 ⊆ ℎ) |
43 | 6 | subgss 18347 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 ⊆ 𝐵) |
44 | 25, 43 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ⊆ 𝐵) |
45 | 44 | ad5antr 733 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) ∧ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) → 𝑁 ⊆ 𝐵) |
46 | | eqid 2758 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁) |
47 | 6, 46 | eqger 18397 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er 𝐵) |
48 | 25, 47 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐺 ~QG 𝑁) Er 𝐵) |
49 | 48 | ad4antr 731 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) → (𝐺 ~QG 𝑁) Er 𝐵) |
50 | 49 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) ∧ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) → (𝐺 ~QG 𝑁) Er 𝐵) |
51 | 49, 34 | erth 8348 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) → (𝑎(𝐺 ~QG 𝑁)𝑥 ↔ [𝑎](𝐺 ~QG 𝑁) = [𝑥](𝐺 ~QG 𝑁))) |
52 | 25 | ad4antr 731 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) → 𝑁 ∈ (SubGrp‘𝐺)) |
53 | 6, 11, 52, 34 | quslsm 31114 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) → [𝑎](𝐺 ~QG 𝑁) = ({𝑎} ⊕ 𝑁)) |
54 | 6, 11, 52, 32 | quslsm 31114 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} ⊕ 𝑁)) |
55 | 53, 54 | eqeq12d 2774 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) → ([𝑎](𝐺 ~QG 𝑁) = [𝑥](𝐺 ~QG 𝑁) ↔ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁))) |
56 | 51, 55 | bitrd 282 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) → (𝑎(𝐺 ~QG 𝑁)𝑥 ↔ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁))) |
57 | 56 | biimpar 481 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) ∧ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) → 𝑎(𝐺 ~QG 𝑁)𝑥) |
58 | 50, 57 | ersym 8311 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) ∧ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) → 𝑥(𝐺 ~QG 𝑁)𝑎) |
59 | 6, 37, 36, 46 | eqgval 18396 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ⊆ 𝐵) → (𝑥(𝐺 ~QG 𝑁)𝑎 ↔ (𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑎) ∈ 𝑁))) |
60 | 59 | biimpa 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ⊆ 𝐵) ∧ 𝑥(𝐺 ~QG 𝑁)𝑎) → (𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑎) ∈ 𝑁)) |
61 | 60 | simp3d 1141 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ Grp ∧ 𝑁 ⊆ 𝐵) ∧ 𝑥(𝐺 ~QG 𝑁)𝑎) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑎) ∈ 𝑁) |
62 | 29, 45, 58, 61 | syl21anc 836 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) ∧ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑎) ∈ 𝑁) |
63 | 42, 62 | sseldd 3893 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) ∧ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) → (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑎) ∈ ℎ) |
64 | 36 | subgcl 18356 |
. . . . . . . . . . . . . 14
⊢ ((ℎ ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ ℎ ∧ (((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑎) ∈ ℎ) → (𝑥(+g‘𝐺)(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑎)) ∈ ℎ) |
65 | 40, 41, 63, 64 | syl3anc 1368 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) ∧ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) → (𝑥(+g‘𝐺)(((invg‘𝐺)‘𝑥)(+g‘𝐺)𝑎)) ∈ ℎ) |
66 | 39, 65 | eqeltrrd 2853 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑥 ∈ ℎ) ∧ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) → 𝑎 ∈ ℎ) |
67 | 66 | adantllr 718 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ ({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) ∧ 𝑥 ∈ ℎ) ∧ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) → 𝑎 ∈ ℎ) |
68 | | eqid 2758 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) |
69 | | ovex 7183 |
. . . . . . . . . . . . . 14
⊢ ({𝑥} ⊕ 𝑁) ∈ V |
70 | 68, 69 | elrnmpti 5801 |
. . . . . . . . . . . . 13
⊢ (({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ↔ ∃𝑥 ∈ ℎ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) |
71 | 70 | biimpi 219 |
. . . . . . . . . . . 12
⊢ (({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) → ∃𝑥 ∈ ℎ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) |
72 | 71 | adantl 485 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ ({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) → ∃𝑥 ∈ ℎ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) |
73 | 23, 67, 72 | r19.29af 3254 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ ({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) → 𝑎 ∈ ℎ) |
74 | | simpr 488 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑎 ∈ ℎ) → 𝑎 ∈ ℎ) |
75 | | ovexd 7185 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑎 ∈ ℎ) → ({𝑎} ⊕ 𝑁) ∈ V) |
76 | | sneq 4532 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → {𝑥} = {𝑎}) |
77 | 76 | oveq1d 7165 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → ({𝑥} ⊕ 𝑁) = ({𝑎} ⊕ 𝑁)) |
78 | 77 | eqcomd 2764 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) |
79 | 78 | adantl 485 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑎 ∈ ℎ) ∧ 𝑥 = 𝑎) → ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) |
80 | 68, 74, 75, 79 | elrnmptdv 5803 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) ∧ 𝑎 ∈ ℎ) → ({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
81 | 73, 80 | impbida 800 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) ∧ 𝑎 ∈ 𝐵) → (({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ↔ 𝑎 ∈ ℎ)) |
82 | 81 | rabbidva 3390 |
. . . . . . . 8
⊢ (((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))} = {𝑎 ∈ 𝐵 ∣ 𝑎 ∈ ℎ}) |
83 | 30 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) → ℎ ⊆ 𝐵) |
84 | | dfss7 4145 |
. . . . . . . . . 10
⊢ (ℎ ⊆ 𝐵 ↔ {𝑎 ∈ 𝐵 ∣ 𝑎 ∈ ℎ} = ℎ) |
85 | 83, 84 | sylib 221 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) → {𝑎 ∈ 𝐵 ∣ 𝑎 ∈ ℎ} = ℎ) |
86 | 85 | adantr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) → {𝑎 ∈ 𝐵 ∣ 𝑎 ∈ ℎ} = ℎ) |
87 | 82, 86 | eqtr2d 2794 |
. . . . . . 7
⊢ (((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) → ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))}) |
88 | 14, 18, 87 | rspcedvd 3544 |
. . . . . 6
⊢ (((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) → ∃𝑓 ∈ 𝑇 ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
89 | 88 | anasss 470 |
. . . . 5
⊢ ((𝜑 ∧ (ℎ ∈ (SubGrp‘𝐺) ∧ 𝑁 ⊆ ℎ)) → ∃𝑓 ∈ 𝑇 ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
90 | 13 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
91 | 7 | eleq2i 2843 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ 𝑇 ↔ 𝑓 ∈ (SubGrp‘𝑄)) |
92 | 91 | biimpi 219 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ 𝑇 → 𝑓 ∈ (SubGrp‘𝑄)) |
93 | 92 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑓 ∈ (SubGrp‘𝑄)) |
94 | 6, 10, 11, 90, 93 | nsgmgclem 31117 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺)) |
95 | 94 | adantr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺)) |
96 | | eleq1 2839 |
. . . . . . . . 9
⊢ (ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} → (ℎ ∈ (SubGrp‘𝐺) ↔ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺))) |
97 | 96 | adantl 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) → (ℎ ∈ (SubGrp‘𝐺) ↔ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺))) |
98 | 95, 97 | mpbird 260 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) → ℎ ∈ (SubGrp‘𝐺)) |
99 | 44 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑁 ⊆ 𝐵) |
100 | 25 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → 𝑁 ∈ (SubGrp‘𝐺)) |
101 | | simpr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → 𝑎 ∈ 𝑁) |
102 | 11 | grplsmid 31113 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑎 ∈ 𝑁) → ({𝑎} ⊕ 𝑁) = 𝑁) |
103 | 100, 101,
102 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → ({𝑎} ⊕ 𝑁) = 𝑁) |
104 | 10 | nsgqus0 31116 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ 𝑓) |
105 | 90, 93, 104 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑁 ∈ 𝑓) |
106 | 105 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → 𝑁 ∈ 𝑓) |
107 | 103, 106 | eqeltrd 2852 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → ({𝑎} ⊕ 𝑁) ∈ 𝑓) |
108 | 99, 107 | ssrabdv 3978 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑁 ⊆ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
109 | 108 | adantr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) → 𝑁 ⊆ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
110 | | simpr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) → ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
111 | 109, 110 | sseqtrrd 3933 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) → 𝑁 ⊆ ℎ) |
112 | 98, 111 | jca 515 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) → (ℎ ∈ (SubGrp‘𝐺) ∧ 𝑁 ⊆ ℎ)) |
113 | 112 | r19.29an 3212 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑓 ∈ 𝑇 ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) → (ℎ ∈ (SubGrp‘𝐺) ∧ 𝑁 ⊆ ℎ)) |
114 | 89, 113 | impbida 800 |
. . . 4
⊢ (𝜑 → ((ℎ ∈ (SubGrp‘𝐺) ∧ 𝑁 ⊆ ℎ) ↔ ∃𝑓 ∈ 𝑇 ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓})) |
115 | 5, 114 | syl5bb 286 |
. . 3
⊢ (𝜑 → (ℎ ∈ 𝑆 ↔ ∃𝑓 ∈ 𝑇 ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓})) |
116 | 3, 115 | bitr4id 293 |
. 2
⊢ (𝜑 → (ℎ ∈ ran 𝐹 ↔ ℎ ∈ 𝑆)) |
117 | 116 | eqrdv 2756 |
1
⊢ (𝜑 → ran 𝐹 = 𝑆) |