Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqusf1olem3 Structured version   Visualization version   GIF version

Theorem nsgqusf1olem3 33423
Description: Lemma for nsgqusf1o 33424. (Contributed by Thierry Arnoux, 4-Aug-2024.)
Hypotheses
Ref Expression
nsgqusf1o.b 𝐵 = (Base‘𝐺)
nsgqusf1o.s 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
nsgqusf1o.t 𝑇 = (SubGrp‘𝑄)
nsgqusf1o.1 = (le‘(toInc‘𝑆))
nsgqusf1o.2 = (le‘(toInc‘𝑇))
nsgqusf1o.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgqusf1o.p = (LSSum‘𝐺)
nsgqusf1o.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
nsgqusf1o.f 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
nsgqusf1o.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
nsgqusf1olem3 (𝜑 → ran 𝐹 = 𝑆)
Distinct variable groups:   ,𝑎,𝑓,,𝑥   𝐵,𝑎,𝑓,,𝑥   𝐸,𝑎,𝑓,,𝑥   𝑓,𝐹,,𝑥   𝐺,𝑎,𝑓,,𝑥   𝑁,𝑎,𝑓,,𝑥   𝑄,𝑎,𝑓,,𝑥   𝑆,𝑎,𝑓,,𝑥   𝑇,𝑎,𝑓,,𝑥   𝜑,𝑎,𝑓,,𝑥
Allowed substitution hints:   𝐹(𝑎)   (𝑥,𝑓,,𝑎)   (𝑥,𝑓,,𝑎)

Proof of Theorem nsgqusf1olem3
StepHypRef Expression
1 nsgqusf1o.f . . . . 5 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
21elrnmpt 5972 . . . 4 ( ∈ V → ( ∈ ran 𝐹 ↔ ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}))
32elv 3483 . . 3 ( ∈ ran 𝐹 ↔ ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
4 nsgqusf1o.s . . . . 5 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
54reqabi 3457 . . . 4 (𝑆 ↔ ( ∈ (SubGrp‘𝐺) ∧ 𝑁))
6 nsgqusf1o.b . . . . . . . 8 𝐵 = (Base‘𝐺)
7 nsgqusf1o.t . . . . . . . 8 𝑇 = (SubGrp‘𝑄)
8 nsgqusf1o.1 . . . . . . . 8 = (le‘(toInc‘𝑆))
9 nsgqusf1o.2 . . . . . . . 8 = (le‘(toInc‘𝑇))
10 nsgqusf1o.q . . . . . . . 8 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
11 nsgqusf1o.p . . . . . . . 8 = (LSSum‘𝐺)
12 nsgqusf1o.e . . . . . . . 8 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
13 nsgqusf1o.n . . . . . . . 8 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
146, 4, 7, 8, 9, 10, 11, 12, 1, 13nsgqusf1olem1 33421 . . . . . . 7 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
15 eleq2 2828 . . . . . . . . . 10 (𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) → (({𝑎} 𝑁) ∈ 𝑓 ↔ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
1615rabbidv 3441 . . . . . . . . 9 (𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))})
1716eqeq2d 2746 . . . . . . . 8 (𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) → ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↔ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))}))
1817adantl 481 . . . . . . 7 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))) → ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↔ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))}))
19 nfv 1912 . . . . . . . . . . . 12 𝑥(((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵)
20 nfmpt1 5256 . . . . . . . . . . . . . 14 𝑥(𝑥 ↦ ({𝑥} 𝑁))
2120nfrn 5966 . . . . . . . . . . . . 13 𝑥ran (𝑥 ↦ ({𝑥} 𝑁))
2221nfel2 2922 . . . . . . . . . . . 12 𝑥({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
2319, 22nfan 1897 . . . . . . . . . . 11 𝑥((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
24 nsgsubg 19189 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
2513, 24syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ (SubGrp‘𝐺))
26 subgrcl 19162 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2725, 26syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ Grp)
2827ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → 𝐺 ∈ Grp)
2928adantr 480 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝐺 ∈ Grp)
306subgss 19158 . . . . . . . . . . . . . . . . 17 ( ∈ (SubGrp‘𝐺) → 𝐵)
3130ad3antlr 731 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) → 𝐵)
3231sselda 3995 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → 𝑥𝐵)
3332adantr 480 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑥𝐵)
34 simplr 769 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → 𝑎𝐵)
3534adantr 480 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑎𝐵)
36 eqid 2735 . . . . . . . . . . . . . . 15 (+g𝐺) = (+g𝐺)
37 eqid 2735 . . . . . . . . . . . . . . 15 (invg𝐺) = (invg𝐺)
386, 36, 37grpasscan1 19032 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑎𝐵) → (𝑥(+g𝐺)(((invg𝐺)‘𝑥)(+g𝐺)𝑎)) = 𝑎)
3929, 33, 35, 38syl3anc 1370 . . . . . . . . . . . . 13 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → (𝑥(+g𝐺)(((invg𝐺)‘𝑥)(+g𝐺)𝑎)) = 𝑎)
40 simp-5r 786 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → ∈ (SubGrp‘𝐺))
41 simplr 769 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑥)
42 simp-4r 784 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑁)
436subgss 19158 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝐵)
4425, 43syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑁𝐵)
4544ad5antr 734 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑁𝐵)
46 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
476, 46eqger 19209 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er 𝐵)
4825, 47syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺 ~QG 𝑁) Er 𝐵)
4948ad4antr 732 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → (𝐺 ~QG 𝑁) Er 𝐵)
5049adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → (𝐺 ~QG 𝑁) Er 𝐵)
5149, 34erth 8795 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → (𝑎(𝐺 ~QG 𝑁)𝑥 ↔ [𝑎](𝐺 ~QG 𝑁) = [𝑥](𝐺 ~QG 𝑁)))
5225ad4antr 732 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → 𝑁 ∈ (SubGrp‘𝐺))
536, 11, 52, 34quslsm 33413 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → [𝑎](𝐺 ~QG 𝑁) = ({𝑎} 𝑁))
546, 11, 52, 32quslsm 33413 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
5553, 54eqeq12d 2751 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → ([𝑎](𝐺 ~QG 𝑁) = [𝑥](𝐺 ~QG 𝑁) ↔ ({𝑎} 𝑁) = ({𝑥} 𝑁)))
5651, 55bitrd 279 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → (𝑎(𝐺 ~QG 𝑁)𝑥 ↔ ({𝑎} 𝑁) = ({𝑥} 𝑁)))
5756biimpar 477 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑎(𝐺 ~QG 𝑁)𝑥)
5850, 57ersym 8756 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑥(𝐺 ~QG 𝑁)𝑎)
596, 37, 36, 46eqgval 19208 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑁𝐵) → (𝑥(𝐺 ~QG 𝑁)𝑎 ↔ (𝑥𝐵𝑎𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ 𝑁)))
6059biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ 𝑁𝐵) ∧ 𝑥(𝐺 ~QG 𝑁)𝑎) → (𝑥𝐵𝑎𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ 𝑁))
6160simp3d 1143 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑁𝐵) ∧ 𝑥(𝐺 ~QG 𝑁)𝑎) → (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ 𝑁)
6229, 45, 58, 61syl21anc 838 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ 𝑁)
6342, 62sseldd 3996 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ )
6436subgcl 19167 . . . . . . . . . . . . . 14 (( ∈ (SubGrp‘𝐺) ∧ 𝑥 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ ) → (𝑥(+g𝐺)(((invg𝐺)‘𝑥)(+g𝐺)𝑎)) ∈ )
6540, 41, 63, 64syl3anc 1370 . . . . . . . . . . . . 13 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → (𝑥(+g𝐺)(((invg𝐺)‘𝑥)(+g𝐺)𝑎)) ∈ )
6639, 65eqeltrrd 2840 . . . . . . . . . . . 12 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑎)
6766adantllr 719 . . . . . . . . . . 11 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑎)
68 eqid 2735 . . . . . . . . . . . . . 14 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥 ↦ ({𝑥} 𝑁))
69 ovex 7464 . . . . . . . . . . . . . 14 ({𝑥} 𝑁) ∈ V
7068, 69elrnmpti 5976 . . . . . . . . . . . . 13 (({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ ∃𝑥 ({𝑎} 𝑁) = ({𝑥} 𝑁))
7170biimpi 216 . . . . . . . . . . . 12 (({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) → ∃𝑥 ({𝑎} 𝑁) = ({𝑥} 𝑁))
7271adantl 481 . . . . . . . . . . 11 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → ∃𝑥 ({𝑎} 𝑁) = ({𝑥} 𝑁))
7323, 67, 72r19.29af 3266 . . . . . . . . . 10 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → 𝑎)
74 simpr 484 . . . . . . . . . . 11 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑎) → 𝑎)
75 ovexd 7466 . . . . . . . . . . 11 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑎) → ({𝑎} 𝑁) ∈ V)
76 sneq 4641 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → {𝑥} = {𝑎})
7776oveq1d 7446 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ({𝑥} 𝑁) = ({𝑎} 𝑁))
7877eqcomd 2741 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ({𝑎} 𝑁) = ({𝑥} 𝑁))
7978adantl 481 . . . . . . . . . . 11 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑎) ∧ 𝑥 = 𝑎) → ({𝑎} 𝑁) = ({𝑥} 𝑁))
8068, 74, 75, 79elrnmptdv 5979 . . . . . . . . . 10 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑎) → ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
8173, 80impbida 801 . . . . . . . . 9 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) → (({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ 𝑎))
8281rabbidva 3440 . . . . . . . 8 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))} = {𝑎𝐵𝑎})
8330adantl 481 . . . . . . . . . 10 ((𝜑 ∈ (SubGrp‘𝐺)) → 𝐵)
84 dfss7 4257 . . . . . . . . . 10 (𝐵 ↔ {𝑎𝐵𝑎} = )
8583, 84sylib 218 . . . . . . . . 9 ((𝜑 ∈ (SubGrp‘𝐺)) → {𝑎𝐵𝑎} = )
8685adantr 480 . . . . . . . 8 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → {𝑎𝐵𝑎} = )
8782, 86eqtr2d 2776 . . . . . . 7 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))})
8814, 18, 87rspcedvd 3624 . . . . . 6 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
8988anasss 466 . . . . 5 ((𝜑 ∧ ( ∈ (SubGrp‘𝐺) ∧ 𝑁)) → ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
9013adantr 480 . . . . . . . . . 10 ((𝜑𝑓𝑇) → 𝑁 ∈ (NrmSGrp‘𝐺))
917eleq2i 2831 . . . . . . . . . . . 12 (𝑓𝑇𝑓 ∈ (SubGrp‘𝑄))
9291biimpi 216 . . . . . . . . . . 11 (𝑓𝑇𝑓 ∈ (SubGrp‘𝑄))
9392adantl 481 . . . . . . . . . 10 ((𝜑𝑓𝑇) → 𝑓 ∈ (SubGrp‘𝑄))
946, 10, 11, 90, 93nsgmgclem 33419 . . . . . . . . 9 ((𝜑𝑓𝑇) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺))
9594adantr 480 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺))
96 eleq1 2827 . . . . . . . . 9 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → ( ∈ (SubGrp‘𝐺) ↔ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺)))
9796adantl 481 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → ( ∈ (SubGrp‘𝐺) ↔ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺)))
9895, 97mpbird 257 . . . . . . 7 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → ∈ (SubGrp‘𝐺))
9944adantr 480 . . . . . . . . . 10 ((𝜑𝑓𝑇) → 𝑁𝐵)
10025ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁 ∈ (SubGrp‘𝐺))
101 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑎𝑁)
10211grplsmid 33412 . . . . . . . . . . . 12 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
103100, 101, 102syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
10410nsgqus0 33418 . . . . . . . . . . . . 13 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑁𝑓)
10590, 93, 104syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑓𝑇) → 𝑁𝑓)
106105adantr 480 . . . . . . . . . . 11 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁𝑓)
107103, 106eqeltrd 2839 . . . . . . . . . 10 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) ∈ 𝑓)
10899, 107ssrabdv 4084 . . . . . . . . 9 ((𝜑𝑓𝑇) → 𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
109108adantr 480 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → 𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
110 simpr 484 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
111109, 110sseqtrrd 4037 . . . . . . 7 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → 𝑁)
11298, 111jca 511 . . . . . 6 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → ( ∈ (SubGrp‘𝐺) ∧ 𝑁))
113112r19.29an 3156 . . . . 5 ((𝜑 ∧ ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → ( ∈ (SubGrp‘𝐺) ∧ 𝑁))
11489, 113impbida 801 . . . 4 (𝜑 → (( ∈ (SubGrp‘𝐺) ∧ 𝑁) ↔ ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}))
1155, 114bitrid 283 . . 3 (𝜑 → (𝑆 ↔ ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}))
1163, 115bitr4id 290 . 2 (𝜑 → ( ∈ ran 𝐹𝑆))
117116eqrdv 2733 1 (𝜑 → ran 𝐹 = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wrex 3068  {crab 3433  Vcvv 3478  wss 3963  {csn 4631   class class class wbr 5148  cmpt 5231  ran crn 5690  cfv 6563  (class class class)co 7431   Er wer 8741  [cec 8742  Basecbs 17245  +gcplusg 17298  lecple 17305   /s cqus 17552  toInccipo 18585  Grpcgrp 18964  invgcminusg 18965  SubGrpcsubg 19151  NrmSGrpcnsg 19152   ~QG cqg 19153  LSSumclsm 19667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-ec 8746  df-qs 8750  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-0g 17488  df-imas 17555  df-qus 17556  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-subg 19154  df-nsg 19155  df-eqg 19156  df-oppg 19377  df-lsm 19669
This theorem is referenced by:  nsgqusf1o  33424
  Copyright terms: Public domain W3C validator