Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqusf1olem3 Structured version   Visualization version   GIF version

Theorem nsgqusf1olem3 31502
Description: Lemma for nsgqusf1o 31503. (Contributed by Thierry Arnoux, 4-Aug-2024.)
Hypotheses
Ref Expression
nsgqusf1o.b 𝐵 = (Base‘𝐺)
nsgqusf1o.s 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
nsgqusf1o.t 𝑇 = (SubGrp‘𝑄)
nsgqusf1o.1 = (le‘(toInc‘𝑆))
nsgqusf1o.2 = (le‘(toInc‘𝑇))
nsgqusf1o.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgqusf1o.p = (LSSum‘𝐺)
nsgqusf1o.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
nsgqusf1o.f 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
nsgqusf1o.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
nsgqusf1olem3 (𝜑 → ran 𝐹 = 𝑆)
Distinct variable groups:   ,𝑎,𝑓,,𝑥   𝐵,𝑎,𝑓,,𝑥   𝐸,𝑎,𝑓,,𝑥   𝑓,𝐹,,𝑥   𝐺,𝑎,𝑓,,𝑥   𝑁,𝑎,𝑓,,𝑥   𝑄,𝑎,𝑓,,𝑥   𝑆,𝑎,𝑓,,𝑥   𝑇,𝑎,𝑓,,𝑥   𝜑,𝑎,𝑓,,𝑥
Allowed substitution hints:   𝐹(𝑎)   (𝑥,𝑓,,𝑎)   (𝑥,𝑓,,𝑎)

Proof of Theorem nsgqusf1olem3
StepHypRef Expression
1 nsgqusf1o.f . . . . 5 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
21elrnmpt 5854 . . . 4 ( ∈ V → ( ∈ ran 𝐹 ↔ ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}))
32elv 3428 . . 3 ( ∈ ran 𝐹 ↔ ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
4 nsgqusf1o.s . . . . 5 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
54rabeq2i 3412 . . . 4 (𝑆 ↔ ( ∈ (SubGrp‘𝐺) ∧ 𝑁))
6 nsgqusf1o.b . . . . . . . 8 𝐵 = (Base‘𝐺)
7 nsgqusf1o.t . . . . . . . 8 𝑇 = (SubGrp‘𝑄)
8 nsgqusf1o.1 . . . . . . . 8 = (le‘(toInc‘𝑆))
9 nsgqusf1o.2 . . . . . . . 8 = (le‘(toInc‘𝑇))
10 nsgqusf1o.q . . . . . . . 8 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
11 nsgqusf1o.p . . . . . . . 8 = (LSSum‘𝐺)
12 nsgqusf1o.e . . . . . . . 8 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
13 nsgqusf1o.n . . . . . . . 8 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
146, 4, 7, 8, 9, 10, 11, 12, 1, 13nsgqusf1olem1 31500 . . . . . . 7 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
15 eleq2 2827 . . . . . . . . . 10 (𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) → (({𝑎} 𝑁) ∈ 𝑓 ↔ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
1615rabbidv 3404 . . . . . . . . 9 (𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))})
1716eqeq2d 2749 . . . . . . . 8 (𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) → ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↔ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))}))
1817adantl 481 . . . . . . 7 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))) → ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↔ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))}))
19 nfv 1918 . . . . . . . . . . . 12 𝑥(((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵)
20 nfmpt1 5178 . . . . . . . . . . . . . 14 𝑥(𝑥 ↦ ({𝑥} 𝑁))
2120nfrn 5850 . . . . . . . . . . . . 13 𝑥ran (𝑥 ↦ ({𝑥} 𝑁))
2221nfel2 2924 . . . . . . . . . . . 12 𝑥({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
2319, 22nfan 1903 . . . . . . . . . . 11 𝑥((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
24 nsgsubg 18701 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
2513, 24syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ (SubGrp‘𝐺))
26 subgrcl 18675 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2725, 26syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ Grp)
2827ad4antr 728 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → 𝐺 ∈ Grp)
2928adantr 480 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝐺 ∈ Grp)
306subgss 18671 . . . . . . . . . . . . . . . . 17 ( ∈ (SubGrp‘𝐺) → 𝐵)
3130ad3antlr 727 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) → 𝐵)
3231sselda 3917 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → 𝑥𝐵)
3332adantr 480 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑥𝐵)
34 simplr 765 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → 𝑎𝐵)
3534adantr 480 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑎𝐵)
36 eqid 2738 . . . . . . . . . . . . . . 15 (+g𝐺) = (+g𝐺)
37 eqid 2738 . . . . . . . . . . . . . . 15 (invg𝐺) = (invg𝐺)
386, 36, 37grpasscan1 18553 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑎𝐵) → (𝑥(+g𝐺)(((invg𝐺)‘𝑥)(+g𝐺)𝑎)) = 𝑎)
3929, 33, 35, 38syl3anc 1369 . . . . . . . . . . . . 13 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → (𝑥(+g𝐺)(((invg𝐺)‘𝑥)(+g𝐺)𝑎)) = 𝑎)
40 simp-5r 782 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → ∈ (SubGrp‘𝐺))
41 simplr 765 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑥)
42 simp-4r 780 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑁)
436subgss 18671 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝐵)
4425, 43syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑁𝐵)
4544ad5antr 730 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑁𝐵)
46 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
476, 46eqger 18721 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er 𝐵)
4825, 47syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺 ~QG 𝑁) Er 𝐵)
4948ad4antr 728 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → (𝐺 ~QG 𝑁) Er 𝐵)
5049adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → (𝐺 ~QG 𝑁) Er 𝐵)
5149, 34erth 8505 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → (𝑎(𝐺 ~QG 𝑁)𝑥 ↔ [𝑎](𝐺 ~QG 𝑁) = [𝑥](𝐺 ~QG 𝑁)))
5225ad4antr 728 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → 𝑁 ∈ (SubGrp‘𝐺))
536, 11, 52, 34quslsm 31495 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → [𝑎](𝐺 ~QG 𝑁) = ({𝑎} 𝑁))
546, 11, 52, 32quslsm 31495 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
5553, 54eqeq12d 2754 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → ([𝑎](𝐺 ~QG 𝑁) = [𝑥](𝐺 ~QG 𝑁) ↔ ({𝑎} 𝑁) = ({𝑥} 𝑁)))
5651, 55bitrd 278 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → (𝑎(𝐺 ~QG 𝑁)𝑥 ↔ ({𝑎} 𝑁) = ({𝑥} 𝑁)))
5756biimpar 477 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑎(𝐺 ~QG 𝑁)𝑥)
5850, 57ersym 8468 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑥(𝐺 ~QG 𝑁)𝑎)
596, 37, 36, 46eqgval 18720 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑁𝐵) → (𝑥(𝐺 ~QG 𝑁)𝑎 ↔ (𝑥𝐵𝑎𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ 𝑁)))
6059biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ 𝑁𝐵) ∧ 𝑥(𝐺 ~QG 𝑁)𝑎) → (𝑥𝐵𝑎𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ 𝑁))
6160simp3d 1142 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑁𝐵) ∧ 𝑥(𝐺 ~QG 𝑁)𝑎) → (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ 𝑁)
6229, 45, 58, 61syl21anc 834 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ 𝑁)
6342, 62sseldd 3918 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ )
6436subgcl 18680 . . . . . . . . . . . . . 14 (( ∈ (SubGrp‘𝐺) ∧ 𝑥 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ ) → (𝑥(+g𝐺)(((invg𝐺)‘𝑥)(+g𝐺)𝑎)) ∈ )
6540, 41, 63, 64syl3anc 1369 . . . . . . . . . . . . 13 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → (𝑥(+g𝐺)(((invg𝐺)‘𝑥)(+g𝐺)𝑎)) ∈ )
6639, 65eqeltrrd 2840 . . . . . . . . . . . 12 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑎)
6766adantllr 715 . . . . . . . . . . 11 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑎)
68 eqid 2738 . . . . . . . . . . . . . 14 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥 ↦ ({𝑥} 𝑁))
69 ovex 7288 . . . . . . . . . . . . . 14 ({𝑥} 𝑁) ∈ V
7068, 69elrnmpti 5858 . . . . . . . . . . . . 13 (({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ ∃𝑥 ({𝑎} 𝑁) = ({𝑥} 𝑁))
7170biimpi 215 . . . . . . . . . . . 12 (({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) → ∃𝑥 ({𝑎} 𝑁) = ({𝑥} 𝑁))
7271adantl 481 . . . . . . . . . . 11 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → ∃𝑥 ({𝑎} 𝑁) = ({𝑥} 𝑁))
7323, 67, 72r19.29af 3259 . . . . . . . . . 10 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → 𝑎)
74 simpr 484 . . . . . . . . . . 11 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑎) → 𝑎)
75 ovexd 7290 . . . . . . . . . . 11 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑎) → ({𝑎} 𝑁) ∈ V)
76 sneq 4568 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → {𝑥} = {𝑎})
7776oveq1d 7270 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ({𝑥} 𝑁) = ({𝑎} 𝑁))
7877eqcomd 2744 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ({𝑎} 𝑁) = ({𝑥} 𝑁))
7978adantl 481 . . . . . . . . . . 11 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑎) ∧ 𝑥 = 𝑎) → ({𝑎} 𝑁) = ({𝑥} 𝑁))
8068, 74, 75, 79elrnmptdv 5860 . . . . . . . . . 10 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑎) → ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
8173, 80impbida 797 . . . . . . . . 9 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) → (({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ 𝑎))
8281rabbidva 3402 . . . . . . . 8 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))} = {𝑎𝐵𝑎})
8330adantl 481 . . . . . . . . . 10 ((𝜑 ∈ (SubGrp‘𝐺)) → 𝐵)
84 dfss7 4171 . . . . . . . . . 10 (𝐵 ↔ {𝑎𝐵𝑎} = )
8583, 84sylib 217 . . . . . . . . 9 ((𝜑 ∈ (SubGrp‘𝐺)) → {𝑎𝐵𝑎} = )
8685adantr 480 . . . . . . . 8 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → {𝑎𝐵𝑎} = )
8782, 86eqtr2d 2779 . . . . . . 7 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))})
8814, 18, 87rspcedvd 3555 . . . . . 6 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
8988anasss 466 . . . . 5 ((𝜑 ∧ ( ∈ (SubGrp‘𝐺) ∧ 𝑁)) → ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
9013adantr 480 . . . . . . . . . 10 ((𝜑𝑓𝑇) → 𝑁 ∈ (NrmSGrp‘𝐺))
917eleq2i 2830 . . . . . . . . . . . 12 (𝑓𝑇𝑓 ∈ (SubGrp‘𝑄))
9291biimpi 215 . . . . . . . . . . 11 (𝑓𝑇𝑓 ∈ (SubGrp‘𝑄))
9392adantl 481 . . . . . . . . . 10 ((𝜑𝑓𝑇) → 𝑓 ∈ (SubGrp‘𝑄))
946, 10, 11, 90, 93nsgmgclem 31498 . . . . . . . . 9 ((𝜑𝑓𝑇) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺))
9594adantr 480 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺))
96 eleq1 2826 . . . . . . . . 9 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → ( ∈ (SubGrp‘𝐺) ↔ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺)))
9796adantl 481 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → ( ∈ (SubGrp‘𝐺) ↔ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺)))
9895, 97mpbird 256 . . . . . . 7 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → ∈ (SubGrp‘𝐺))
9944adantr 480 . . . . . . . . . 10 ((𝜑𝑓𝑇) → 𝑁𝐵)
10025ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁 ∈ (SubGrp‘𝐺))
101 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑎𝑁)
10211grplsmid 31494 . . . . . . . . . . . 12 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
103100, 101, 102syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
10410nsgqus0 31497 . . . . . . . . . . . . 13 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑁𝑓)
10590, 93, 104syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑓𝑇) → 𝑁𝑓)
106105adantr 480 . . . . . . . . . . 11 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁𝑓)
107103, 106eqeltrd 2839 . . . . . . . . . 10 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) ∈ 𝑓)
10899, 107ssrabdv 4003 . . . . . . . . 9 ((𝜑𝑓𝑇) → 𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
109108adantr 480 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → 𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
110 simpr 484 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
111109, 110sseqtrrd 3958 . . . . . . 7 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → 𝑁)
11298, 111jca 511 . . . . . 6 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → ( ∈ (SubGrp‘𝐺) ∧ 𝑁))
113112r19.29an 3216 . . . . 5 ((𝜑 ∧ ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → ( ∈ (SubGrp‘𝐺) ∧ 𝑁))
11489, 113impbida 797 . . . 4 (𝜑 → (( ∈ (SubGrp‘𝐺) ∧ 𝑁) ↔ ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}))
1155, 114syl5bb 282 . . 3 (𝜑 → (𝑆 ↔ ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}))
1163, 115bitr4id 289 . 2 (𝜑 → ( ∈ ran 𝐹𝑆))
117116eqrdv 2736 1 (𝜑 → ran 𝐹 = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  {csn 4558   class class class wbr 5070  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255   Er wer 8453  [cec 8454  Basecbs 16840  +gcplusg 16888  lecple 16895   /s cqus 17133  toInccipo 18160  Grpcgrp 18492  invgcminusg 18493  SubGrpcsubg 18664  NrmSGrpcnsg 18665   ~QG cqg 18666  LSSumclsm 19154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ec 8458  df-qs 8462  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-0g 17069  df-imas 17136  df-qus 17137  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-subg 18667  df-nsg 18668  df-eqg 18669  df-oppg 18865  df-lsm 19156
This theorem is referenced by:  nsgqusf1o  31503
  Copyright terms: Public domain W3C validator