Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqusf1olem3 Structured version   Visualization version   GIF version

Theorem nsgqusf1olem3 33380
Description: Lemma for nsgqusf1o 33381. (Contributed by Thierry Arnoux, 4-Aug-2024.)
Hypotheses
Ref Expression
nsgqusf1o.b 𝐵 = (Base‘𝐺)
nsgqusf1o.s 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
nsgqusf1o.t 𝑇 = (SubGrp‘𝑄)
nsgqusf1o.1 = (le‘(toInc‘𝑆))
nsgqusf1o.2 = (le‘(toInc‘𝑇))
nsgqusf1o.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgqusf1o.p = (LSSum‘𝐺)
nsgqusf1o.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
nsgqusf1o.f 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
nsgqusf1o.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
nsgqusf1olem3 (𝜑 → ran 𝐹 = 𝑆)
Distinct variable groups:   ,𝑎,𝑓,,𝑥   𝐵,𝑎,𝑓,,𝑥   𝐸,𝑎,𝑓,,𝑥   𝑓,𝐹,,𝑥   𝐺,𝑎,𝑓,,𝑥   𝑁,𝑎,𝑓,,𝑥   𝑄,𝑎,𝑓,,𝑥   𝑆,𝑎,𝑓,,𝑥   𝑇,𝑎,𝑓,,𝑥   𝜑,𝑎,𝑓,,𝑥
Allowed substitution hints:   𝐹(𝑎)   (𝑥,𝑓,,𝑎)   (𝑥,𝑓,,𝑎)

Proof of Theorem nsgqusf1olem3
StepHypRef Expression
1 nsgqusf1o.f . . . . 5 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
21elrnmpt 5897 . . . 4 ( ∈ V → ( ∈ ran 𝐹 ↔ ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}))
32elv 3441 . . 3 ( ∈ ran 𝐹 ↔ ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
4 nsgqusf1o.s . . . . 5 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
54reqabi 3418 . . . 4 (𝑆 ↔ ( ∈ (SubGrp‘𝐺) ∧ 𝑁))
6 nsgqusf1o.b . . . . . . . 8 𝐵 = (Base‘𝐺)
7 nsgqusf1o.t . . . . . . . 8 𝑇 = (SubGrp‘𝑄)
8 nsgqusf1o.1 . . . . . . . 8 = (le‘(toInc‘𝑆))
9 nsgqusf1o.2 . . . . . . . 8 = (le‘(toInc‘𝑇))
10 nsgqusf1o.q . . . . . . . 8 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
11 nsgqusf1o.p . . . . . . . 8 = (LSSum‘𝐺)
12 nsgqusf1o.e . . . . . . . 8 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
13 nsgqusf1o.n . . . . . . . 8 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
146, 4, 7, 8, 9, 10, 11, 12, 1, 13nsgqusf1olem1 33378 . . . . . . 7 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
15 eleq2 2820 . . . . . . . . . 10 (𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) → (({𝑎} 𝑁) ∈ 𝑓 ↔ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))))
1615rabbidv 3402 . . . . . . . . 9 (𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))})
1716eqeq2d 2742 . . . . . . . 8 (𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) → ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↔ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))}))
1817adantl 481 . . . . . . 7 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))) → ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↔ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))}))
19 nfv 1915 . . . . . . . . . . . 12 𝑥(((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵)
20 nfmpt1 5188 . . . . . . . . . . . . . 14 𝑥(𝑥 ↦ ({𝑥} 𝑁))
2120nfrn 5891 . . . . . . . . . . . . 13 𝑥ran (𝑥 ↦ ({𝑥} 𝑁))
2221nfel2 2913 . . . . . . . . . . . 12 𝑥({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))
2319, 22nfan 1900 . . . . . . . . . . 11 𝑥((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
24 nsgsubg 19070 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
2513, 24syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ (SubGrp‘𝐺))
26 subgrcl 19044 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2725, 26syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ Grp)
2827ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → 𝐺 ∈ Grp)
2928adantr 480 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝐺 ∈ Grp)
306subgss 19040 . . . . . . . . . . . . . . . . 17 ( ∈ (SubGrp‘𝐺) → 𝐵)
3130ad3antlr 731 . . . . . . . . . . . . . . . 16 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) → 𝐵)
3231sselda 3929 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → 𝑥𝐵)
3332adantr 480 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑥𝐵)
34 simplr 768 . . . . . . . . . . . . . . 15 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → 𝑎𝐵)
3534adantr 480 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑎𝐵)
36 eqid 2731 . . . . . . . . . . . . . . 15 (+g𝐺) = (+g𝐺)
37 eqid 2731 . . . . . . . . . . . . . . 15 (invg𝐺) = (invg𝐺)
386, 36, 37grpasscan1 18914 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑎𝐵) → (𝑥(+g𝐺)(((invg𝐺)‘𝑥)(+g𝐺)𝑎)) = 𝑎)
3929, 33, 35, 38syl3anc 1373 . . . . . . . . . . . . 13 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → (𝑥(+g𝐺)(((invg𝐺)‘𝑥)(+g𝐺)𝑎)) = 𝑎)
40 simp-5r 785 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → ∈ (SubGrp‘𝐺))
41 simplr 768 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑥)
42 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑁)
436subgss 19040 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝐵)
4425, 43syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑁𝐵)
4544ad5antr 734 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑁𝐵)
46 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
476, 46eqger 19090 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er 𝐵)
4825, 47syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺 ~QG 𝑁) Er 𝐵)
4948ad4antr 732 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → (𝐺 ~QG 𝑁) Er 𝐵)
5049adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → (𝐺 ~QG 𝑁) Er 𝐵)
5149, 34erth 8676 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → (𝑎(𝐺 ~QG 𝑁)𝑥 ↔ [𝑎](𝐺 ~QG 𝑁) = [𝑥](𝐺 ~QG 𝑁)))
5225ad4antr 732 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → 𝑁 ∈ (SubGrp‘𝐺))
536, 11, 52, 34quslsm 33370 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → [𝑎](𝐺 ~QG 𝑁) = ({𝑎} 𝑁))
546, 11, 52, 32quslsm 33370 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
5553, 54eqeq12d 2747 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → ([𝑎](𝐺 ~QG 𝑁) = [𝑥](𝐺 ~QG 𝑁) ↔ ({𝑎} 𝑁) = ({𝑥} 𝑁)))
5651, 55bitrd 279 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) → (𝑎(𝐺 ~QG 𝑁)𝑥 ↔ ({𝑎} 𝑁) = ({𝑥} 𝑁)))
5756biimpar 477 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑎(𝐺 ~QG 𝑁)𝑥)
5850, 57ersym 8634 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑥(𝐺 ~QG 𝑁)𝑎)
596, 37, 36, 46eqgval 19089 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑁𝐵) → (𝑥(𝐺 ~QG 𝑁)𝑎 ↔ (𝑥𝐵𝑎𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ 𝑁)))
6059biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ 𝑁𝐵) ∧ 𝑥(𝐺 ~QG 𝑁)𝑎) → (𝑥𝐵𝑎𝐵 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ 𝑁))
6160simp3d 1144 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑁𝐵) ∧ 𝑥(𝐺 ~QG 𝑁)𝑎) → (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ 𝑁)
6229, 45, 58, 61syl21anc 837 . . . . . . . . . . . . . . 15 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ 𝑁)
6342, 62sseldd 3930 . . . . . . . . . . . . . 14 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ )
6436subgcl 19049 . . . . . . . . . . . . . 14 (( ∈ (SubGrp‘𝐺) ∧ 𝑥 ∧ (((invg𝐺)‘𝑥)(+g𝐺)𝑎) ∈ ) → (𝑥(+g𝐺)(((invg𝐺)‘𝑥)(+g𝐺)𝑎)) ∈ )
6540, 41, 63, 64syl3anc 1373 . . . . . . . . . . . . 13 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → (𝑥(+g𝐺)(((invg𝐺)‘𝑥)(+g𝐺)𝑎)) ∈ )
6639, 65eqeltrrd 2832 . . . . . . . . . . . 12 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑎)
6766adantllr 719 . . . . . . . . . . 11 (((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) ∧ 𝑥) ∧ ({𝑎} 𝑁) = ({𝑥} 𝑁)) → 𝑎)
68 eqid 2731 . . . . . . . . . . . . . 14 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥 ↦ ({𝑥} 𝑁))
69 ovex 7379 . . . . . . . . . . . . . 14 ({𝑥} 𝑁) ∈ V
7068, 69elrnmpti 5901 . . . . . . . . . . . . 13 (({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ ∃𝑥 ({𝑎} 𝑁) = ({𝑥} 𝑁))
7170biimpi 216 . . . . . . . . . . . 12 (({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) → ∃𝑥 ({𝑎} 𝑁) = ({𝑥} 𝑁))
7271adantl 481 . . . . . . . . . . 11 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → ∃𝑥 ({𝑎} 𝑁) = ({𝑥} 𝑁))
7323, 67, 72r19.29af 3241 . . . . . . . . . 10 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))) → 𝑎)
74 simpr 484 . . . . . . . . . . 11 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑎) → 𝑎)
75 ovexd 7381 . . . . . . . . . . 11 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑎) → ({𝑎} 𝑁) ∈ V)
76 sneq 4583 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → {𝑥} = {𝑎})
7776oveq1d 7361 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ({𝑥} 𝑁) = ({𝑎} 𝑁))
7877eqcomd 2737 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ({𝑎} 𝑁) = ({𝑥} 𝑁))
7978adantl 481 . . . . . . . . . . 11 ((((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑎) ∧ 𝑥 = 𝑎) → ({𝑎} 𝑁) = ({𝑥} 𝑁))
8068, 74, 75, 79elrnmptdv 5904 . . . . . . . . . 10 (((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) ∧ 𝑎) → ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
8173, 80impbida 800 . . . . . . . . 9 ((((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) ∧ 𝑎𝐵) → (({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ 𝑎))
8281rabbidva 3401 . . . . . . . 8 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))} = {𝑎𝐵𝑎})
8330adantl 481 . . . . . . . . . 10 ((𝜑 ∈ (SubGrp‘𝐺)) → 𝐵)
84 dfss7 4198 . . . . . . . . . 10 (𝐵 ↔ {𝑎𝐵𝑎} = )
8583, 84sylib 218 . . . . . . . . 9 ((𝜑 ∈ (SubGrp‘𝐺)) → {𝑎𝐵𝑎} = )
8685adantr 480 . . . . . . . 8 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → {𝑎𝐵𝑎} = )
8782, 86eqtr2d 2767 . . . . . . 7 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁))})
8814, 18, 87rspcedvd 3574 . . . . . 6 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
8988anasss 466 . . . . 5 ((𝜑 ∧ ( ∈ (SubGrp‘𝐺) ∧ 𝑁)) → ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
9013adantr 480 . . . . . . . . . 10 ((𝜑𝑓𝑇) → 𝑁 ∈ (NrmSGrp‘𝐺))
917eleq2i 2823 . . . . . . . . . . . 12 (𝑓𝑇𝑓 ∈ (SubGrp‘𝑄))
9291biimpi 216 . . . . . . . . . . 11 (𝑓𝑇𝑓 ∈ (SubGrp‘𝑄))
9392adantl 481 . . . . . . . . . 10 ((𝜑𝑓𝑇) → 𝑓 ∈ (SubGrp‘𝑄))
946, 10, 11, 90, 93nsgmgclem 33376 . . . . . . . . 9 ((𝜑𝑓𝑇) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺))
9594adantr 480 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺))
96 eleq1 2819 . . . . . . . . 9 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → ( ∈ (SubGrp‘𝐺) ↔ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺)))
9796adantl 481 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → ( ∈ (SubGrp‘𝐺) ↔ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺)))
9895, 97mpbird 257 . . . . . . 7 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → ∈ (SubGrp‘𝐺))
9944adantr 480 . . . . . . . . . 10 ((𝜑𝑓𝑇) → 𝑁𝐵)
10025ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁 ∈ (SubGrp‘𝐺))
101 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑎𝑁)
10211grplsmid 33369 . . . . . . . . . . . 12 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
103100, 101, 102syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
10410nsgqus0 33375 . . . . . . . . . . . . 13 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑁𝑓)
10590, 93, 104syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑓𝑇) → 𝑁𝑓)
106105adantr 480 . . . . . . . . . . 11 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁𝑓)
107103, 106eqeltrd 2831 . . . . . . . . . 10 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) ∈ 𝑓)
10899, 107ssrabdv 4019 . . . . . . . . 9 ((𝜑𝑓𝑇) → 𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
109108adantr 480 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → 𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
110 simpr 484 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
111109, 110sseqtrrd 3967 . . . . . . 7 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → 𝑁)
11298, 111jca 511 . . . . . 6 (((𝜑𝑓𝑇) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → ( ∈ (SubGrp‘𝐺) ∧ 𝑁))
113112r19.29an 3136 . . . . 5 ((𝜑 ∧ ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → ( ∈ (SubGrp‘𝐺) ∧ 𝑁))
11489, 113impbida 800 . . . 4 (𝜑 → (( ∈ (SubGrp‘𝐺) ∧ 𝑁) ↔ ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}))
1155, 114bitrid 283 . . 3 (𝜑 → (𝑆 ↔ ∃𝑓𝑇 = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}))
1163, 115bitr4id 290 . 2 (𝜑 → ( ∈ ran 𝐹𝑆))
117116eqrdv 2729 1 (𝜑 → ran 𝐹 = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  {csn 4573   class class class wbr 5089  cmpt 5170  ran crn 5615  cfv 6481  (class class class)co 7346   Er wer 8619  [cec 8620  Basecbs 17120  +gcplusg 17161  lecple 17168   /s cqus 17409  toInccipo 18433  Grpcgrp 18846  invgcminusg 18847  SubGrpcsubg 19033  NrmSGrpcnsg 19034   ~QG cqg 19035  LSSumclsm 19546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-ec 8624  df-qs 8628  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-subg 19036  df-nsg 19037  df-eqg 19038  df-oppg 19258  df-lsm 19548
This theorem is referenced by:  nsgqusf1o  33381
  Copyright terms: Public domain W3C validator