Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elsymdifxor | Structured version Visualization version GIF version |
Description: Membership in a symmetric difference is an exclusive-or relationship. (Contributed by David A. Wheeler, 26-Apr-2020.) (Proof shortened by BJ, 13-Aug-2022.) |
Ref | Expression |
---|---|
elsymdifxor | ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ (𝐴 ∈ 𝐵 ⊻ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsymdif 4181 | . 2 ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) | |
2 | df-xor 1507 | . 2 ⊢ ((𝐴 ∈ 𝐵 ⊻ 𝐴 ∈ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ (𝐴 ∈ 𝐵 ⊻ 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ⊻ wxo 1506 ∈ wcel 2106 △ csymdif 4175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-xor 1507 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-symdif 4176 |
This theorem is referenced by: dfsymdif2 4184 symdifass 4185 |
Copyright terms: Public domain | W3C validator |