MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsymdifxor Structured version   Visualization version   GIF version

Theorem elsymdifxor 4226
Description: Membership in a symmetric difference is an exclusive-or relationship. (Contributed by David A. Wheeler, 26-Apr-2020.) (Proof shortened by BJ, 13-Aug-2022.)
Assertion
Ref Expression
elsymdifxor (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))

Proof of Theorem elsymdifxor
StepHypRef Expression
1 elsymdif 4224 . 2 (𝐴 ∈ (𝐵𝐶) ↔ ¬ (𝐴𝐵𝐴𝐶))
2 df-xor 1502 . 2 ((𝐴𝐵𝐴𝐶) ↔ ¬ (𝐴𝐵𝐴𝐶))
31, 2bitr4i 280 1 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wxo 1501  wcel 2114  csymdif 4218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-xor 1502  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3496  df-dif 3939  df-un 3941  df-symdif 4219
This theorem is referenced by:  dfsymdif2  4227  symdifass  4228
  Copyright terms: Public domain W3C validator