MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsymdifxor Structured version   Visualization version   GIF version

Theorem elsymdifxor 4180
Description: Membership in a symmetric difference is an exclusive-or relationship. (Contributed by David A. Wheeler, 26-Apr-2020.) (Proof shortened by BJ, 13-Aug-2022.)
Assertion
Ref Expression
elsymdifxor (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))

Proof of Theorem elsymdifxor
StepHypRef Expression
1 elsymdif 4178 . 2 (𝐴 ∈ (𝐵𝐶) ↔ ¬ (𝐴𝐵𝐴𝐶))
2 df-xor 1504 . 2 ((𝐴𝐵𝐴𝐶) ↔ ¬ (𝐴𝐵𝐴𝐶))
31, 2bitr4i 277 1 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wxo 1503  wcel 2108  csymdif 4172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-xor 1504  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-symdif 4173
This theorem is referenced by:  dfsymdif2  4181  symdifass  4182
  Copyright terms: Public domain W3C validator