Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difindir | Structured version Visualization version GIF version |
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
difindir | ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∩ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inindir 4161 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∩ (𝐵 ∩ (V ∖ 𝐶))) | |
2 | invdif 4202 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | |
3 | invdif 4202 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
4 | invdif 4202 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
5 | 3, 4 | ineq12i 4144 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐶)) ∩ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐶) ∩ (𝐵 ∖ 𝐶)) |
6 | 1, 2, 5 | 3eqtr3i 2774 | 1 ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∩ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3432 ∖ cdif 3884 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 |
This theorem is referenced by: ablfac1eulem 19675 ballotlemgun 32491 |
Copyright terms: Public domain | W3C validator |