|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > difindir | Structured version Visualization version GIF version | ||
| Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) | 
| Ref | Expression | 
|---|---|
| difindir | ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∩ (𝐵 ∖ 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inindir 4235 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ (V ∖ 𝐶)) ∩ (𝐵 ∩ (V ∖ 𝐶))) | |
| 2 | invdif 4278 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | |
| 3 | invdif 4278 | . . 3 ⊢ (𝐴 ∩ (V ∖ 𝐶)) = (𝐴 ∖ 𝐶) | |
| 4 | invdif 4278 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
| 5 | 3, 4 | ineq12i 4217 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐶)) ∩ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐶) ∩ (𝐵 ∖ 𝐶)) | 
| 6 | 1, 2, 5 | 3eqtr3i 2772 | 1 ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∩ (𝐵 ∖ 𝐶)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 Vcvv 3479 ∖ cdif 3947 ∩ cin 3949 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-in 3957 | 
| This theorem is referenced by: ablfac1eulem 20093 ballotlemgun 34528 | 
| Copyright terms: Public domain | W3C validator |